@article{DANMA_2020_494_a19,
author = {A. A. Ardentov and L. V. Lokutsievskiy and Yu. L. Sachkov},
title = {Explicit solutions for a series of optimization problems with 2-dimensional control via convex trigonometry},
journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
pages = {86--92},
year = {2020},
volume = {494},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DANMA_2020_494_a19/}
}
TY - JOUR AU - A. A. Ardentov AU - L. V. Lokutsievskiy AU - Yu. L. Sachkov TI - Explicit solutions for a series of optimization problems with 2-dimensional control via convex trigonometry JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2020 SP - 86 EP - 92 VL - 494 UR - http://geodesic.mathdoc.fr/item/DANMA_2020_494_a19/ LA - ru ID - DANMA_2020_494_a19 ER -
%0 Journal Article %A A. A. Ardentov %A L. V. Lokutsievskiy %A Yu. L. Sachkov %T Explicit solutions for a series of optimization problems with 2-dimensional control via convex trigonometry %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2020 %P 86-92 %V 494 %U http://geodesic.mathdoc.fr/item/DANMA_2020_494_a19/ %G ru %F DANMA_2020_494_a19
A. A. Ardentov; L. V. Lokutsievskiy; Yu. L. Sachkov. Explicit solutions for a series of optimization problems with 2-dimensional control via convex trigonometry. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 494 (2020), pp. 86-92. http://geodesic.mathdoc.fr/item/DANMA_2020_494_a19/
[1] Lokutsievskii L.V., “Vypuklaya trigonometriya s prilozheniyami k subfinslerovoi geometrii”, Matem. sb., 210:8 (2019), 120–148 | DOI | MR | Zbl
[2] Gribanova I. A., “Kvazigiperbolicheskaya ploskost”, Sib. matem. zhurn., 40:2 (1999), 288–301 | MR | Zbl
[3] Jacobson N., Lie Algebras, Interscience, 1962 | MR | Zbl
[4] Agrachev A., Barilari D., “Sub-Riemanian structures on 3D Lie groups”, J. Dynamical and Control Systems, 18 (2012), 21–44 | DOI | MR | Zbl
[5] Busemann H., “The Isoperimetric Problem in the Minkowski Plane”, American J. of Mathematics, 69:4, Oct. (1947), 863–871 | DOI | MR | Zbl
[6] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatlit, M., 1961 | MR
[7] Agrachev A.A., Sachkov Yu.L., Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2005
[8] Berestovskii V. N., “Geodezicheskie negolonomnykh levoinvariantnykh vnutrennikh metrik na gruppe Geizenberga i izoperimetriksy ploskosti Minkovskogo”, Sib. matem. zhurn., 35:1 (1994), 3–11 | Zbl
[9] Euler L., Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimitrici latissimo sensu accepti, Bousquet, Lausanne, 1744 | MR
[10] Markov A.A., “Neskolko primerov resheniya osobogo roda zadach o naibolshikh i naimenshikh velichinakh”, Soobsch. Kharkov. matem. obsch. Vtoraya ser., 1, 1889, 250–276
[11] Dubins L.E., “On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents”, American J. of Mathematics, 79:3 (1957), 497–516 | DOI | MR | Zbl
[12] Reeds J.A., Shepp L.A., “Optimal Paths for a Car That Goes Both Forwards and Backwards”, Pacific J. Math., 145:2 (1990), 367–393 | DOI | MR | Zbl
[13] Sachkov Yu.L., “Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane”, ESAIM: Control, Optimisation and Calculus of Variations, 17:2 (2011), 293–321 | DOI | MR | Zbl