@article{DANMA_2020_494_a17,
author = {S. V. Polyakov and T. A. Kudryashova and N. I. Tarasov},
title = {Double potential method for modeling the internal flow of a viscous incompressible liquid},
journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
pages = {76--79},
year = {2020},
volume = {494},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DANMA_2020_494_a17/}
}
TY - JOUR AU - S. V. Polyakov AU - T. A. Kudryashova AU - N. I. Tarasov TI - Double potential method for modeling the internal flow of a viscous incompressible liquid JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2020 SP - 76 EP - 79 VL - 494 UR - http://geodesic.mathdoc.fr/item/DANMA_2020_494_a17/ LA - ru ID - DANMA_2020_494_a17 ER -
%0 Journal Article %A S. V. Polyakov %A T. A. Kudryashova %A N. I. Tarasov %T Double potential method for modeling the internal flow of a viscous incompressible liquid %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2020 %P 76-79 %V 494 %U http://geodesic.mathdoc.fr/item/DANMA_2020_494_a17/ %G ru %F DANMA_2020_494_a17
S. V. Polyakov; T. A. Kudryashova; N. I. Tarasov. Double potential method for modeling the internal flow of a viscous incompressible liquid. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 494 (2020), pp. 76-79. http://geodesic.mathdoc.fr/item/DANMA_2020_494_a17/
[1] Kudryashova T.A., Polyakov S.V., Puzyrkov D.V., Tarasov N.I., Matematicheskoe modelirovanie protsessov ochistki vody ot primesei zheleza, RAN, M., 2017, 17 pp.
[2] Polyakov S.V., Kudryashova T.A., Karamzin Yu.N., Tarasov N.I., “Mathematical Modelling of Water Treatment Processes”, Mathematica Montisnigri, XL (2017), 110–126 | MR | Zbl
[3] Rouch P., Vychislitelnaya gidrodinamika, Mir, M., 1980, 618 pp.
[4] Richardson S.M., Cornish A.R., “Solution of Three-Dimentional Incompressible Flow Problens”, J. Fluid Mech., 82:2 (1977), 309–319 | DOI | MR | Zbl
[5] Richardson S.M., Numerical solution of the three-dimensional Navier-Stokes equations, Doctoral dissertation, Department of Chemical Engineering and Chemical Technology, Imperial College of Science and Technology, London, 1976
[6] Gegg S.G., A dual-potential formulation of the Navier-Stokes equations, Retrospective Theses and Dissertations, 1989 https://lib.dr.iastate.edu/rtd/9040
[7] Landau L.D., Lifshits E.M., Teoreticheskaya fizika. Gidrodinamika, 3-e izd., ispr., Nauka, Gl. red. fiz.-mat. lit, M., 1986, 736 pp. | MR
[8] Eymard R., Gallouet T.R., Herbin R., “The finite volume method”, Handbook of Numerical Analysis, 7, North Holland, Amsterdam, 2000, 713–1020 | MR | Zbl
[9] Polyakov S.V., “Eksponentsialnye raznostnye skhemy dlya uravneniya konvektsii-diffuzii”, Mathematica Montisnigri, XXVI (2012 (2013)), 29–44
[10] Kudryashova T., Polyakov S., Tarasov N., “Application of the Double Potential Method to Simulate Incompressible Viscous Flows”, Computational Science, ICCS 2019, Lecture Notes in Computer Science, 11539, eds. Rodrigues J. et al., Springer, Cham, 2019 | MR | Zbl
[11] Samarski A.A., Nikolaev E.S., Methods for the Solution of Grid Equations, Nauka, M., 1978 | MR
[12] Matyushin P.V., “Evolution of the diffusion-induced flow over a disk, submerged in a stratified viscous fluid”, Mathematical Modeling, 30:11 (2018), 44–58 | MR | Zbl
[13] Koleshko S.B., Lapin Yu.V., Chumakov Yu.S., “Turbulent Free-Convection Boundary Layer on a Vertical Heated Plate: Regularities of the Temperature Layer”, High Temperature, 43:3 (2005), 429–440 | DOI
[14] Gushchin V.A., Matyushin P.V., “Modeling and investigation of stratified fluid flows around finite bodies”, Comput. Math. Math. Phys., 56:6 (2016), 1034–1047 | DOI | MR | Zbl
[15] Chorin A.J., “A Numerical Method for Solving Incompressible Viscous Flow Problems”, J. Computational Physics, 135 (1997), 118–125 | DOI | MR | Zbl