Double potential method for modeling the internal flow of a viscous incompressible liquid
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 494 (2020), pp. 76-79 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of numerical modelling water purification from iron impurities is considered. The cleaning task is relevant for many industrial applications, including the development of new cleaning methods and devices for the preparation of ultrapure water. The performed mathematical study is associated with the calculations of the water flow and the transfer of contaminants in the treatment system for real geometry. In the work, a new numerical approach to solving the problem is proposed; the corresponding calculated data are obtained. The analysis of the results showed that they have a good agreement with the calculation results of the ANSYS CFD package.
Keywords: double potential method, water purification, mathematical modeling.
@article{DANMA_2020_494_a17,
     author = {S. V. Polyakov and T. A. Kudryashova and N. I. Tarasov},
     title = {Double potential method for modeling the internal flow of a viscous incompressible liquid},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {76--79},
     year = {2020},
     volume = {494},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_494_a17/}
}
TY  - JOUR
AU  - S. V. Polyakov
AU  - T. A. Kudryashova
AU  - N. I. Tarasov
TI  - Double potential method for modeling the internal flow of a viscous incompressible liquid
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 76
EP  - 79
VL  - 494
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_494_a17/
LA  - ru
ID  - DANMA_2020_494_a17
ER  - 
%0 Journal Article
%A S. V. Polyakov
%A T. A. Kudryashova
%A N. I. Tarasov
%T Double potential method for modeling the internal flow of a viscous incompressible liquid
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 76-79
%V 494
%U http://geodesic.mathdoc.fr/item/DANMA_2020_494_a17/
%G ru
%F DANMA_2020_494_a17
S. V. Polyakov; T. A. Kudryashova; N. I. Tarasov. Double potential method for modeling the internal flow of a viscous incompressible liquid. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 494 (2020), pp. 76-79. http://geodesic.mathdoc.fr/item/DANMA_2020_494_a17/

[1] Kudryashova T.A., Polyakov S.V., Puzyrkov D.V., Tarasov N.I., Matematicheskoe modelirovanie protsessov ochistki vody ot primesei zheleza, RAN, M., 2017, 17 pp.

[2] Polyakov S.V., Kudryashova T.A., Karamzin Yu.N., Tarasov N.I., “Mathematical Modelling of Water Treatment Processes”, Mathematica Montisnigri, XL (2017), 110–126 | MR | Zbl

[3] Rouch P., Vychislitelnaya gidrodinamika, Mir, M., 1980, 618 pp.

[4] Richardson S.M., Cornish A.R., “Solution of Three-Dimentional Incompressible Flow Problens”, J. Fluid Mech., 82:2 (1977), 309–319 | DOI | MR | Zbl

[5] Richardson S.M., Numerical solution of the three-dimensional Navier-Stokes equations, Doctoral dissertation, Department of Chemical Engineering and Chemical Technology, Imperial College of Science and Technology, London, 1976

[6] Gegg S.G., A dual-potential formulation of the Navier-Stokes equations, Retrospective Theses and Dissertations, 1989 https://lib.dr.iastate.edu/rtd/9040

[7] Landau L.D., Lifshits E.M., Teoreticheskaya fizika. Gidrodinamika, 3-e izd., ispr., Nauka, Gl. red. fiz.-mat. lit, M., 1986, 736 pp. | MR

[8] Eymard R., Gallouet T.R., Herbin R., “The finite volume method”, Handbook of Numerical Analysis, 7, North Holland, Amsterdam, 2000, 713–1020 | MR | Zbl

[9] Polyakov S.V., “Eksponentsialnye raznostnye skhemy dlya uravneniya konvektsii-diffuzii”, Mathematica Montisnigri, XXVI (2012 (2013)), 29–44

[10] Kudryashova T., Polyakov S., Tarasov N., “Application of the Double Potential Method to Simulate Incompressible Viscous Flows”, Computational Science, ICCS 2019, Lecture Notes in Computer Science, 11539, eds. Rodrigues J. et al., Springer, Cham, 2019 | MR | Zbl

[11] Samarski A.A., Nikolaev E.S., Methods for the Solution of Grid Equations, Nauka, M., 1978 | MR

[12] Matyushin P.V., “Evolution of the diffusion-induced flow over a disk, submerged in a stratified viscous fluid”, Mathematical Modeling, 30:11 (2018), 44–58 | MR | Zbl

[13] Koleshko S.B., Lapin Yu.V., Chumakov Yu.S., “Turbulent Free-Convection Boundary Layer on a Vertical Heated Plate: Regularities of the Temperature Layer”, High Temperature, 43:3 (2005), 429–440 | DOI

[14] Gushchin V.A., Matyushin P.V., “Modeling and investigation of stratified fluid flows around finite bodies”, Comput. Math. Math. Phys., 56:6 (2016), 1034–1047 | DOI | MR | Zbl

[15] Chorin A.J., “A Numerical Method for Solving Incompressible Viscous Flow Problems”, J. Computational Physics, 135 (1997), 118–125 | DOI | MR | Zbl