On alternating quasipositive links
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 494 (2020), pp. 56-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An effectively verifiable condition for quasipositivity of links is given. In particular, it is proven that if a quasipositive link can be represented by an alternating diagram satisfying the condition that no pair of Seifert circles is connected by a single crossing, then the diagram is positive and the link is strongly quasipositive.
Keywords: quasipositive link, alternating link, Seifert circles.
@article{DANMA_2020_494_a12,
     author = {S. Yu. Orevkov},
     title = {On alternating quasipositive links},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {56--59},
     year = {2020},
     volume = {494},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_494_a12/}
}
TY  - JOUR
AU  - S. Yu. Orevkov
TI  - On alternating quasipositive links
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 56
EP  - 59
VL  - 494
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_494_a12/
LA  - ru
ID  - DANMA_2020_494_a12
ER  - 
%0 Journal Article
%A S. Yu. Orevkov
%T On alternating quasipositive links
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 56-59
%V 494
%U http://geodesic.mathdoc.fr/item/DANMA_2020_494_a12/
%G ru
%F DANMA_2020_494_a12
S. Yu. Orevkov. On alternating quasipositive links. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 494 (2020), pp. 56-59. http://geodesic.mathdoc.fr/item/DANMA_2020_494_a12/

[1] Baader S., “Slice and Gordian Numbers of Track Knots”, Osaka J. Math., 42 (2005), 257–271 | MR | Zbl

[2] Boileau M., Boyer S., Gordon C. M., “Branched Covers of Quasi-Positive Links and L-Spaces”, J. of Topology, 12 (2019), 536–576 | DOI | MR | Zbl

[3] Boileau M., Orevkov S., “Quasipositivité d'une courbe analytique dans une boule pseudo-convexe”, C. R. Acad. Sci. Paris, Ser. I, 332 (2001), 825–830 | DOI | MR | Zbl

[4] Diao Y., Ernst G., Hetyei G., Liu P., A Diagrammatic Approach for Determining the Braid Index of Alternating Links, arXiv: 1901.09778 | MR

[5] Diao Y., Hetyei G., Liu P., The Braid Index of Reduced Alternating Links, arXiv: 1701.07366

[6] Dynnikov I.A., Prasolov M.V., “Shunty dlya pryamougolnykh diagramm. Dokazatelstvo gipotezy Dzhonsa i svyazannye voprosy”, Trudy MMO, 74:1 (2013), 115–173 | MR | Zbl

[7] Hayden K., “Minimal Braid Representatives of Quasipositive Links”, Pac. J. Math., 295 (2018), 421–427 | DOI | MR | Zbl

[8] Ito T., On Homogeneous Quasipositive Links, 2007, arXiv: 2007.03962 | MR

[9] Murasugi K., “On Certain Numerical Invariant of Link Types”, Trans. Amer. Math. Soc., 117 (1965), 387–422 | DOI | MR | Zbl

[10] Nakamura T., “Four-genus and Unknotting Number of Positive Knots and Links”, Osaka J. Math., 37 (2000), 441–451 | MR | Zbl

[11] Orevkov S.Yu., “Classification of Flexible $M$-curves of Degree 8 up to Isotopy”, GAFA - Geom. Funct. Anal., 12 (2002), 723–755 | DOI | MR | Zbl

[12] Orevkov S.Yu., “Kvazipolozhitelnye zatsepleniya i svyaznye summy”, Funkts. analiz i prilozh., 54:1 (2020), 81–86 | DOI | MR | Zbl

[13] Rudolph L., “Positive Links are Strongly Quasipositive”, Proceedings of the Kirbyfest (Berkeley, CA, USA, June 22-26, 1998), Geom. Topol. Monogr., 2, University of Warwick, Warwick, UK, 1999, 555–562 | DOI | MR | Zbl

[14] Traczyk P., “A Combinatorial Formula for the Signature of Alternating Diagrams”, Fundamenta Math., 184 (2004), 311–316 | DOI | MR | Zbl

[15] Yamada S., “The Minimal Number of Seifert Circles Equals the Braid Index of a Link”, Invent. Math., 89 (1987), 347–356 | DOI | MR | Zbl