Representations of $\zeta(2n+1)$ and related numbers in the form of definite integrals and rapidly convergent series
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 494 (2020), pp. 48-52 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\zeta(s)$ and $\beta(s)$ be the Riemann zeta function and the Dirichlet beta function. The formulas for calculating the values of $\zeta(2m)$ and $\beta(2m-1)$ ($m=1,2,\dots$) are classical and well known. Our aim is to represent $\zeta(2m+1)$, $\beta(2m)$, and related numbers in the form of definite integrals of elementary functions and rapidly converging numerical series containing $\zeta(2m)$. By applying the method of this work, on the one hand, both classical formulas and ones relatively recently obtained by others researchers are proved in a uniform manner, and on the other hand, numerous new results are derived.
Keywords: integral representation of series sums, values of the Riemann zeta function at odd points, values of the Dirichlet beta function at even points
Mots-clés : Catalan's and Apéry's constants.
@article{DANMA_2020_494_a10,
     author = {K. M. Mirzoev and T. A. Safonova},
     title = {Representations of $\zeta(2n+1)$ and related numbers in the form of definite integrals and rapidly convergent series},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {48--52},
     year = {2020},
     volume = {494},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_494_a10/}
}
TY  - JOUR
AU  - K. M. Mirzoev
AU  - T. A. Safonova
TI  - Representations of $\zeta(2n+1)$ and related numbers in the form of definite integrals and rapidly convergent series
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 48
EP  - 52
VL  - 494
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_494_a10/
LA  - ru
ID  - DANMA_2020_494_a10
ER  - 
%0 Journal Article
%A K. M. Mirzoev
%A T. A. Safonova
%T Representations of $\zeta(2n+1)$ and related numbers in the form of definite integrals and rapidly convergent series
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 48-52
%V 494
%U http://geodesic.mathdoc.fr/item/DANMA_2020_494_a10/
%G ru
%F DANMA_2020_494_a10
K. M. Mirzoev; T. A. Safonova. Representations of $\zeta(2n+1)$ and related numbers in the form of definite integrals and rapidly convergent series. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 494 (2020), pp. 48-52. http://geodesic.mathdoc.fr/item/DANMA_2020_494_a10/

[1] Abramowitz M., Stegun I.A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, N.Y., 1972, 1046 pp. | MR

[2] Finch S.R., Mathematical constants, Cambridge University Press, N.Y., 2003, 602 pp. | MR | Zbl

[3] NIST Handbook of Mathematcal Functuios, N.Y., Cambridge, 2010, 951 pp.

[4] Cvijovic D., Klinowski J., “Integral Representations of the Riemann Zeta Function for Odd-Integer Arguments”, J. Computational and Applied Mathematics, 142 (2002), 435–439 | DOI | MR | Zbl

[5] Zudilin V.V., “Ob irratsionalnosti znachenii dzeta-funktsii Rimana”, Izvestiya RAN. Seriya matem., 66:3 (2002), 49–102 | DOI | MR | Zbl

[6] Srivastava H.M., “The Zeta and Related Functions: Recent Developments”, J. Advanced Engineering and Computation, 3:1 (2019), 329–354 | DOI | MR

[7] Mirzoev K.A., Safonova T.A., “Funktsiya Grina obyknovennykh differentsialnykh operatorov i integralnoe predstavlenie summ nekotorykh stepennykh ryadov”, DAN, 482:5 (2018), 500–503 | Zbl

[8] Mirzoev K.A.,Safonova T.A., “Ob integralnom predstavlenii summ nekotorykh stepennykh ryadov”, Matem. zametki, 106:3 (2019), 470–475 | DOI | MR | Zbl

[9] Mirzoev K.A., Safonova T.A., “Obyknovennye differentsialnye operatory i integralnoe predstavlenie summ nekotorykh stepennykh ryadov”, Tr. MMO, 80, no. 2, 2019, 157–177 | Zbl

[10] Prudnikov A.P., Brychkov Yu.A., Marichev O.I., Integraly i ryady. Elementarnye funktsii, v. 1, Fizmatlit, M., 2002, 632 pp. | MR

[11] Mirzoev K.A., Safonova T.A., “Integralnoe predstavlenie summ nekotorykh ryadov, svyazannykh so spetsialnymi funktsiyami”, Matem. zametki, 108:2 (2020), 632–637 | Zbl

[12] Berndt B.C., Ramanujan's Notebooks, v. I, Springer Verlag, N.Y., 1985, 357 pp. | MR

[13] Srivastava H.M., Glasser M.L., Adamchik V.S., “Some Definite Integrals Associated with the Riemann Zeta Function”, J. for Analysis and its Applications, 19:3 (2000), 831–846 | MR | Zbl

[14] Cvijovic D., Klinowski J., “New Rapidly Convergent Series Representations for $\zeta (2n + 1)$”, Proc. Amer. Math. Society, 125:5 (1997), 1263–1271 | DOI | MR | Zbl