Regular boundary value problems for the Dirac operator
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 492 (2020), pp. 49-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

Spectral problems for the Dirac operator specified on a finite interval with regular, but not strongly regular boundary conditions and a complex-valued integrable potential are studied. This work is aimed at finding the conditions under which the root function system forms a common Riesz basis rather than a Riesz basis with parentheses.
Keywords: Dirac operator, spectral expansion, regular boundary conditions.
@article{DANMA_2020_492_a9,
     author = {A. S. Makin},
     title = {Regular boundary value problems for the {Dirac} operator},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {49--53},
     publisher = {mathdoc},
     volume = {492},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_492_a9/}
}
TY  - JOUR
AU  - A. S. Makin
TI  - Regular boundary value problems for the Dirac operator
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 49
EP  - 53
VL  - 492
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_492_a9/
LA  - ru
ID  - DANMA_2020_492_a9
ER  - 
%0 Journal Article
%A A. S. Makin
%T Regular boundary value problems for the Dirac operator
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 49-53
%V 492
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2020_492_a9/
%G ru
%F DANMA_2020_492_a9
A. S. Makin. Regular boundary value problems for the Dirac operator. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 492 (2020), pp. 49-53. http://geodesic.mathdoc.fr/item/DANMA_2020_492_a9/

[1] Marchenko V.A., Operatory Shturma-Liuvillya i ikh prilozheniya, Nauk. dumka, Kiev, 1977

[2] Dzhakov P., Mityagin B.S., “Zony neustoichivosti odnomernykh periodicheskikh operatorov Shredingera”, UMN, 61:4 (2006), 77–182 | DOI | MR | Zbl

[3] Djakov P., Mityagin B., “Bari-Markus property for Riesz projections of 1D periodic Dirac operators”, Math. Nachr., 283:3 (2010), 443–462 | DOI | MR | Zbl

[4] Djakov P., Mityagin B., “1D Dirac operators with special periodic potentials”, Bull. Pol. Acad. Sci. Math., 60:1 (2012), 59–75 | DOI | MR | Zbl

[5] Djakov P., Mityagin B., “Equiconvergence of spectral decompositions of 1D Dirac operators with regular boundary conditions”, J. Approx. Theory, 164:7 (2012), 879–927 | DOI | MR | Zbl

[6] Djakov P., Mityagin B., “Criteria for existence of Riesz bases consisting of root functions of Hill and 1D Dirac operators”, J. Funct. Anal., 263:8 (2012), 2300–2332 | DOI | MR | Zbl

[7] Djakov P., Mityagin B., “Riesz bases consisting of root functions of 1D Dirac operators”, Proc. AMS, 141:4 (2013), 1361–1375 | DOI | MR | Zbl

[8] Djakov P., Mityagin B., “Unconditional Convergence of Spectral Decompositions of 1D Dirac operators with Regular Boundary Conditions”, Indiana Univ. Math. J., 61:1 (2012), 359–398 | DOI | MR | Zbl

[9] Mityagin B.S., “Skhodimost razlozhenii po sobstvennym funktsiyam operatora Diraka”, DAN, 393:4 (2003), 456–459 | MR

[10] Mityagin B., “Spectral Expansions of One-dimensional Periodic Dirac Operators”, Dynamics of PDE, 1:2 (2004), 125–191 | MR | Zbl

[11] Savchuk A.M., Shkalikov A.A., “The Dirac Operator with Complex-Valued Summable Potential”, Math. Notes, 96:5 (2014), 777–810 | DOI | MR | Zbl

[12] Lunev A.A., Malamud M.M., “O bazisnosti Rissa sistemy kornevykh vektorov dlya $2 \times 2$ sistemy tipa Diraka”, DAN, 458:3 (2014), 1–6

[13] Lunyov A., Malamud M., “On the Riesz basis property of root vectors system for $2 \times 2$ Dirac type operators”, J. Math. Anal. Appl., 441:1 (2016), 57–103 | DOI | MR | Zbl

[14] Savchuk A.M., Sadovnichaya I.V., “Bazisnost Rissa so skobkami dlya sistemy Diraka s summiruemym potentsialom”, Sovrem. matematika. Fundam. napravl, 58, 2015, 128–152

[15] Gokhberg I.Ts., Krein M.G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Mir, M., 1967