On $L^2$-dissipativity of a linearized explicit finite-difference scheme with quasi-gasdynamic regularization for the barotropic gas dynamics system of equations
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 492 (2020), pp. 31-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study an explicit two-level symmetric (in space) finite-difference scheme for the multidimensional barotropic gas dynamics system of equations with quasi-gasdynamic regularization linearized at a constant solution (with an arbitrary velocity). A criterion and both necessary and sufficient conditions for the $L^2$-dissipativity of the solutions to the Cauchy problem for the scheme are derived by the spectral method. In them, the Courant number is uniformly bounded with respect to the Mach number.
Keywords: barotropic gas dynamics equations, quasi-gasdynamic system of equations, explicit two-level finite-difference scheme, stability.
@article{DANMA_2020_492_a6,
     author = {A. A. Zlotnik and T. A. Lomonosov},
     title = {On $L^2$-dissipativity of a linearized explicit finite-difference scheme with quasi-gasdynamic regularization for the barotropic gas dynamics system of equations},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {31--37},
     publisher = {mathdoc},
     volume = {492},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_492_a6/}
}
TY  - JOUR
AU  - A. A. Zlotnik
AU  - T. A. Lomonosov
TI  - On $L^2$-dissipativity of a linearized explicit finite-difference scheme with quasi-gasdynamic regularization for the barotropic gas dynamics system of equations
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 31
EP  - 37
VL  - 492
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_492_a6/
LA  - ru
ID  - DANMA_2020_492_a6
ER  - 
%0 Journal Article
%A A. A. Zlotnik
%A T. A. Lomonosov
%T On $L^2$-dissipativity of a linearized explicit finite-difference scheme with quasi-gasdynamic regularization for the barotropic gas dynamics system of equations
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 31-37
%V 492
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2020_492_a6/
%G ru
%F DANMA_2020_492_a6
A. A. Zlotnik; T. A. Lomonosov. On $L^2$-dissipativity of a linearized explicit finite-difference scheme with quasi-gasdynamic regularization for the barotropic gas dynamics system of equations. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 492 (2020), pp. 31-37. http://geodesic.mathdoc.fr/item/DANMA_2020_492_a6/

[1] Chetverushkin B.N., Kineticheskie skhemy i kvazigazodinamicheskaya sistema uravnenii, MAKS Press, M., 2004

[2] Elizarova T.G., Kvazigazodinamicheskie uravneniya i metody rascheta vyazkikh techenii, Nauchnyi mir, M., 2007

[3] Zlotnik A.A., Chetverushkin B.N., ZhVMiMF, 48:3 (2008), 445–472 | MR | Zbl

[4] Zlotnik A.A., ZhVMiMF, 50:2 (2010), 325–337 | MR | Zbl

[5] Zlotnik A.A., Matem. modelirovanie, 24:4 (2012), 65–79 | MR | Zbl

[6] Bulatov O.V., Elizarova T.G., ZhVMiMF, 51:1 (2011), 170–184 | MR | Zbl

[7] Balashov V., Zlotnik A., Savenkov E., Russ. J. Numer. Anal. Math. Model., 32:6 (2017), 347–358 | DOI | MR | Zbl

[8] Elizarova T.G., Zlotnik A.A., Istomina M.A., Astron. zhurn., 95:1 (2018), 11–21 | DOI

[9] Godunov S.K., Ryabenkii V.S., Raznostnye skhemy, Nauka, M., 1977 | MR

[10] Zlotnik A., Lomonosov T., Differential and difference equations with applications, Springer Proceedings in Math. Stat., 230, Springer, Cham, 2018, 635–647 | DOI | MR | Zbl

[11] Zlotnik A.A., Lomonosov T.A., DAN, 482:4 (2018), 375–380 | Zbl

[12] Zlotnik A.A., Lomonosov T.A., ZhVMiMF, 59:3 (2019), 128–140

[13] Zlotnik A., Appl. Math. Lett., 92 (2019), 115–120 | DOI | MR | Zbl

[14] Zlotnik A.A., ZhVMiMF, 56:2 (2016), 301–317 | Zbl