P\'olya--Schur inequality and the Green energy of a discrete charge
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 492 (2020), pp. 24-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical Pólya–Schur inequality for the logarithmic energy of a point charge distributed on a circle is generalized to the Green energy with respect to the concentric circular ring.
Keywords: Pólya–Schur inequality, Green function, Green energy.
@article{DANMA_2020_492_a4,
     author = {V. N. Dubinin},
     title = {P\'olya--Schur inequality and the {Green} energy of a discrete charge},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {24--26},
     publisher = {mathdoc},
     volume = {492},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_492_a4/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - P\'olya--Schur inequality and the Green energy of a discrete charge
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 24
EP  - 26
VL  - 492
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_492_a4/
LA  - ru
ID  - DANMA_2020_492_a4
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T P\'olya--Schur inequality and the Green energy of a discrete charge
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 24-26
%V 492
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2020_492_a4/
%G ru
%F DANMA_2020_492_a4
V. N. Dubinin. P\'olya--Schur inequality and the Green energy of a discrete charge. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 492 (2020), pp. 24-26. http://geodesic.mathdoc.fr/item/DANMA_2020_492_a4/

[1] Schur I., Mathematische Z., 1:4 (1918), 377–402 | DOI | MR

[2] Landkof N.S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966, 515 pp. | MR

[3] Brauchart J.S., Math. Comp., 77:263 (2008), 1599–1613 | DOI | MR | Zbl

[4] Brauchart J.S., Hardin D.P., Saff E.B., Bulletin of the London Mathematical Society, 41:4 (2009), 621–633 | DOI | MR | Zbl

[5] Brauchart J.S., Hardin D.P., Saff E.B., Contemp. Math., 578, 2012, 31–61 | DOI | MR | Zbl

[6] Hardin D.P., Kendall A.P., Saff E.B., Discrete Computational Geometry, 50:1 (2013), 236–243 | DOI | MR | Zbl

[7] Erdélyi T., Hardin D.P., Saff E.B., Mathematika, 61:3 (2015), 581–590 | DOI | MR | Zbl

[8] López-García A., Wagner D.A., Comput. Methods Funct. Theory, 15:4 (2015), 721–750 | DOI | MR | Zbl

[9] Dubinin V.N., Condenser capacities and symmetrization in geometric function theory, Birkhauser/Springer, Basel, 2014, xii+344 pp. | MR | Zbl