Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DANMA_2020_492_a3, author = {B. S. Darkhovsky}, title = {Methods for estimating the global maximum point and the integral of a continuous function on a compact set}, journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a}, pages = {20--23}, publisher = {mathdoc}, volume = {492}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DANMA_2020_492_a3/} }
TY - JOUR AU - B. S. Darkhovsky TI - Methods for estimating the global maximum point and the integral of a continuous function on a compact set JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2020 SP - 20 EP - 23 VL - 492 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2020_492_a3/ LA - ru ID - DANMA_2020_492_a3 ER -
%0 Journal Article %A B. S. Darkhovsky %T Methods for estimating the global maximum point and the integral of a continuous function on a compact set %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2020 %P 20-23 %V 492 %I mathdoc %U http://geodesic.mathdoc.fr/item/DANMA_2020_492_a3/ %G ru %F DANMA_2020_492_a3
B. S. Darkhovsky. Methods for estimating the global maximum point and the integral of a continuous function on a compact set. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 492 (2020), pp. 20-23. http://geodesic.mathdoc.fr/item/DANMA_2020_492_a3/
[1] Lu C., Deng Z. Jin Q., “An Eigenvalue Decomposition Based Branch-and-Bound Algorithm for Nonconvex Quadratic Programming Problems with Convex Quadratic Constraints”, Global Optimization, 67:3 (2017), 475–493 | DOI | MR | Zbl
[2] Herrera J.F.R., Salmeryn J.M.G., Hendrix E.M.T. et al., “On Parallel Branch and Bound Frameworks for Global Optimization”, Global Optimization, 69:3 (2017), 547–560 | DOI | MR | Zbl
[3] Boukouvala F., Hasan M.M.F., Floudas C.A., “Global Optimization of General Constrained Grey-Box Models: New Method and Its Application to Constrained PDEs for Pressure Swing Adsorption”, Global Optimization, 67:1–2 (2017), 3–42 | DOI | MR | Zbl
[4] Dick Josef, “High-Dimensional Integration: The Quasi-Monte Carlo Way”, Acta Numerica, Cambridge University Press, 2013, 133–288 | DOI | MR