Minimax-maximin relations for the problem of vector-valued criteria optimization
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 492 (2020), pp. 104-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

The minimax-maximin relations for vector-valued functionals over the real field are studied. An increase in the dimensionality of criteria may result in a violation of some basic relations, for example, in an inequality between maximin and minimax that is always true for classic problems. Accordingly, the conditions for its correctness or violation need to be established. This paper introduces the definitions of set-valued minimax and maximin for multidimensional criteria and with an analogue in the classic minimax inequality. Necessary and sufficient conditions for its correctness and violation are described for two particular types of vector-valued functionals: the bilinear ones and those with separated variables.
Keywords: set-valued minimax, dynamic programming, multiobjective optimization, optimal control, Pareto frontier.
@article{DANMA_2020_492_a22,
     author = {Yu. A. Komarov and A. B. Kurzhanskii},
     title = {Minimax-maximin relations for the problem of vector-valued criteria optimization},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {104--107},
     publisher = {mathdoc},
     volume = {492},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_492_a22/}
}
TY  - JOUR
AU  - Yu. A. Komarov
AU  - A. B. Kurzhanskii
TI  - Minimax-maximin relations for the problem of vector-valued criteria optimization
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 104
EP  - 107
VL  - 492
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_492_a22/
LA  - ru
ID  - DANMA_2020_492_a22
ER  - 
%0 Journal Article
%A Yu. A. Komarov
%A A. B. Kurzhanskii
%T Minimax-maximin relations for the problem of vector-valued criteria optimization
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 104-107
%V 492
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2020_492_a22/
%G ru
%F DANMA_2020_492_a22
Yu. A. Komarov; A. B. Kurzhanskii. Minimax-maximin relations for the problem of vector-valued criteria optimization. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 492 (2020), pp. 104-107. http://geodesic.mathdoc.fr/item/DANMA_2020_492_a22/

[1] Komarov Yu.A., Kurzhanskii A.B., “Gamiltonov formalizm dlya zadachi upravleniya dvizheniem s vektornym kriteriem”, DAN, 480:4 (2018), 408–412 | DOI | Zbl

[2] Komarov Yu.A., “Gamiltonov formalizm dlya zadachi optimizatsii upravlyaemogo dvizheniya po vektornomu kriteriyu”, Differents. uravneniya, 55:11 (2019), 1499–1509 | DOI | Zbl

[3] Sawaragi Y., Nakayama H., Tanino T., Multiobjective Optimization, Academic Press, L., 1985, 296 pp. | MR | Zbl

[4] Horn R.A., Johnson C.R., Matrix analysis, Cambridge University Press, Cambridge, 1985, 562 pp. | MR | Zbl