Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DANMA_2020_492_a22, author = {Yu. A. Komarov and A. B. Kurzhanskii}, title = {Minimax-maximin relations for the problem of vector-valued criteria optimization}, journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a}, pages = {104--107}, publisher = {mathdoc}, volume = {492}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DANMA_2020_492_a22/} }
TY - JOUR AU - Yu. A. Komarov AU - A. B. Kurzhanskii TI - Minimax-maximin relations for the problem of vector-valued criteria optimization JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2020 SP - 104 EP - 107 VL - 492 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2020_492_a22/ LA - ru ID - DANMA_2020_492_a22 ER -
%0 Journal Article %A Yu. A. Komarov %A A. B. Kurzhanskii %T Minimax-maximin relations for the problem of vector-valued criteria optimization %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2020 %P 104-107 %V 492 %I mathdoc %U http://geodesic.mathdoc.fr/item/DANMA_2020_492_a22/ %G ru %F DANMA_2020_492_a22
Yu. A. Komarov; A. B. Kurzhanskii. Minimax-maximin relations for the problem of vector-valued criteria optimization. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 492 (2020), pp. 104-107. http://geodesic.mathdoc.fr/item/DANMA_2020_492_a22/
[1] Komarov Yu.A., Kurzhanskii A.B., “Gamiltonov formalizm dlya zadachi upravleniya dvizheniem s vektornym kriteriem”, DAN, 480:4 (2018), 408–412 | DOI | Zbl
[2] Komarov Yu.A., “Gamiltonov formalizm dlya zadachi optimizatsii upravlyaemogo dvizheniya po vektornomu kriteriyu”, Differents. uravneniya, 55:11 (2019), 1499–1509 | DOI | Zbl
[3] Sawaragi Y., Nakayama H., Tanino T., Multiobjective Optimization, Academic Press, L., 1985, 296 pp. | MR | Zbl
[4] Horn R.A., Johnson C.R., Matrix analysis, Cambridge University Press, Cambridge, 1985, 562 pp. | MR | Zbl