Bicompact finite-difference scheme for Maxwell’s equations in layered media
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 492 (2020), pp. 15-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

In layered media, the solution of Maxwell’s equations suffers a strong or weak discontinuity at the layer boundaries. Finite-difference schemes providing convergence on strong discontinuities have been proposed for the first time. These are conservative bicompact two-point schemes with mesh nodes lying on the layer boundaries. A fundamentally new technique for taking into account the medium dispersion is proposed. All these features ensure the second order of accuracy of the schemes on discontinuous solutions. Numerical examples illustrating these results are given.
Keywords: Maxwell’s equations, bicompact schemes, layered media, conjugation conditions, material dispersion.
@article{DANMA_2020_492_a2,
     author = {A. A. Belov and Zh. O. Dombrovskaya},
     title = {Bicompact finite-difference scheme for {Maxwell{\textquoteright}s} equations in layered media},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {15--19},
     publisher = {mathdoc},
     volume = {492},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_492_a2/}
}
TY  - JOUR
AU  - A. A. Belov
AU  - Zh. O. Dombrovskaya
TI  - Bicompact finite-difference scheme for Maxwell’s equations in layered media
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 15
EP  - 19
VL  - 492
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_492_a2/
LA  - ru
ID  - DANMA_2020_492_a2
ER  - 
%0 Journal Article
%A A. A. Belov
%A Zh. O. Dombrovskaya
%T Bicompact finite-difference scheme for Maxwell’s equations in layered media
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 15-19
%V 492
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2020_492_a2/
%G ru
%F DANMA_2020_492_a2
A. A. Belov; Zh. O. Dombrovskaya. Bicompact finite-difference scheme for Maxwell’s equations in layered media. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 492 (2020), pp. 15-19. http://geodesic.mathdoc.fr/item/DANMA_2020_492_a2/

[1] Inan U.S., Marshall R.A., Numerical electromagnetics. The FDTD method, Cambridge Univ. Press, Cambridge, 2011 | MR

[2] Yee K.S., IEEE Trans. Antennas. Propag., 14:3 (1966), 302 | DOI | Zbl

[3] Sullivan D.M., Electromagnetic simulation using the FDTD method, IEEE Press, 2000

[4] Kalitkin N.N., Koryakin P.V., DAN, 419:6 (2007)

[5] Kalitkin N.N., Koryakin P.V., Matem. modelirovanie, 21:8 (2009), 44 | Zbl

[6] Sveshnikov A.G., DAN, 3:5 (1950), 517–520

[7] Tolstykh A.I., Kompaktnye raznostnye skhemy i ikh primenenie v zadachakh aerogidrodinamiki, Nauka, M., 1990 | MR

[8] Kalitkin N.N., Alshin A.B., Alshina E.A., Rogov B.V., Vychisleniya na kvaziravnomernykh setkakh, Fizmatlit, M., 2005