A time-dependent strange term arising in homogenization of an elliptic problem with rapidly alternating Neumann and dynamic boundary conditions specified at the domain boundary: the critical case
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 23-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

A strange term arising in the homogenization of elliptic (and parabolic) equations with dynamic boundary conditions given on some boundary parts of critical size is considered. A problem with dynamic boundary conditions given on the union of some boundary subsets of critical size arranged $\varepsilon$-periodically along the boundary and with homogeneous Neumann conditions given on the rest of the boundary is studied. It is proved that the homogenized boundary condition is a Robin-type containing a nonlocal term depending on the trace of the solution $u(x,t)$ on the boundary $\partial\Omega$.
Keywords: homogenization, rapidly oscillating boundary conditions, dynamic boundary conditions.
@article{DANMA_2020_491_a4,
     author = {J. I. Diaz and D. G\'omez-Castro and T. A. Shaposhnikova and M. N. Zubova},
     title = {A time-dependent strange term arising in homogenization of an elliptic problem with rapidly alternating {Neumann} and dynamic boundary conditions specified at the domain boundary: the critical case},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {23--28},
     publisher = {mathdoc},
     volume = {491},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_491_a4/}
}
TY  - JOUR
AU  - J. I. Diaz
AU  - D. Gómez-Castro
AU  - T. A. Shaposhnikova
AU  - M. N. Zubova
TI  - A time-dependent strange term arising in homogenization of an elliptic problem with rapidly alternating Neumann and dynamic boundary conditions specified at the domain boundary: the critical case
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 23
EP  - 28
VL  - 491
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_491_a4/
LA  - ru
ID  - DANMA_2020_491_a4
ER  - 
%0 Journal Article
%A J. I. Diaz
%A D. Gómez-Castro
%A T. A. Shaposhnikova
%A M. N. Zubova
%T A time-dependent strange term arising in homogenization of an elliptic problem with rapidly alternating Neumann and dynamic boundary conditions specified at the domain boundary: the critical case
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 23-28
%V 491
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2020_491_a4/
%G ru
%F DANMA_2020_491_a4
J. I. Diaz; D. Gómez-Castro; T. A. Shaposhnikova; M. N. Zubova. A time-dependent strange term arising in homogenization of an elliptic problem with rapidly alternating Neumann and dynamic boundary conditions specified at the domain boundary: the critical case. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 23-28. http://geodesic.mathdoc.fr/item/DANMA_2020_491_a4/

[1] Angulano M., 4 Dec 2017, arXiv: 1712.01183v1 [math.AP]

[2] Cioranescu D., Murat F., Topics in Mathematical Modeling of Composite Materials, eds. A. Cherkaev and R. Kohn, Springer Scien Business Media, N.Y., 1997, 4594 pp. | MR

[3] Diaz Zh.I., Gomez-Kastro D., Podolskii A.V., Shaposhnikova T.A., DAH, 480:6 (2018), 644–649 | Zbl

[4] Diaz J.I., Gomez-Castro D., Shaposhnikova T.A., Nanocomposite reaction-diffusion processes: anomalous improved homogenization, Series on Nonlinear Analysis and Applicarions, De Gruyter, B., 2021 (to appear) | MR

[5] Diaz J.I., Gomez-Castro D., Shaposhnikova T.A., Zubova M.N., EJDE, 77 (2019), 1–13

[6] Shaposhnikova T.A., Zubova M.N., DAH, 486:1 (2019), 12–19 | MR | Zbl

[7] Timofte C., Math. Model. and Analysis, 8:4 (2003), 337–350 | DOI | MR | Zbl

[8] Gomez D., Lobo M., Perez E., Sanchez-Palencia E., Applicable Analysis, 97:16 (2018), 2893–2919 | DOI | MR | Zbl