On the stochasticity parameter of quadratic residues
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 19-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

Following V.I. Arnold, we define the stochasticity parameter $S(U)$ of a set $U\subseteq\mathbb{Z}_M$ to be the sum of squares of consecutive distances between the elements of $U$. The stochasticity parameter of the set $R_M$ of quadratic residues modulo $M$ is studied. We compare $S(R_M)$ with the average value $s(k)=s(k,M)$ of $S(U)$ over all subsets of $U\subseteq\mathbb{Z}_M$ of size $k$. It is proved that (a) for a set of moduli of positive lower density, we have $S(R_M)$; and (b) for infinitely many moduli, $S(R_M)>s(|R_M|)$.
Keywords: quadratic residues, stochasticity parameter.
@article{DANMA_2020_491_a3,
     author = {M. R. Gabdullin},
     title = {On the stochasticity parameter of quadratic residues},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {19--22},
     publisher = {mathdoc},
     volume = {491},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_491_a3/}
}
TY  - JOUR
AU  - M. R. Gabdullin
TI  - On the stochasticity parameter of quadratic residues
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 19
EP  - 22
VL  - 491
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_491_a3/
LA  - ru
ID  - DANMA_2020_491_a3
ER  - 
%0 Journal Article
%A M. R. Gabdullin
%T On the stochasticity parameter of quadratic residues
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 19-22
%V 491
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2020_491_a3/
%G ru
%F DANMA_2020_491_a3
M. R. Gabdullin. On the stochasticity parameter of quadratic residues. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 19-22. http://geodesic.mathdoc.fr/item/DANMA_2020_491_a3/

[1] Arnold V.I., Gruppy Eilera i arifmetika geometricheskikh progressii, MTsNMO, M., 2003

[2] Garaev M.Z., Konyagin S.V., Malykhin Yu.V., “Asimptotika summy rasstoyanii mezhdu stepennymi vychetami po prostomu modulyu”, Tr. MIAN, 276, 2012, 1–13

[3] Aryan F., “Distribution of squares modulo a composite number”, Int. Math. Res. Not. IMRN, 23 (2015), 12405–12431, arXiv: 1502.05062 | MR | Zbl

[4] Kurlberg P., Rudnick Z., “The Distribution of Spacings between Quadratic Residues”, Duke Math. J., 100 (1999), 211–242 | DOI | MR | Zbl

[5] Kurlberg P., “The Distribution of Spacings between Quadratic Residues. II”, Israel J. Math, 120:A (2000), 205–224 | DOI | MR | Zbl