Constructive solution of one vector equilibrium problem
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 15-18
Voir la notice de l'article provenant de la source Math-Net.Ru
We study a two-dimensional vector logarithmic-potential equilibrium problem with the Nikishin matrix of interaction. A constructive method for finding the supports of a vector equilibrium measure is given. The densities of the components of the equilibrium measure are expressed in terms of an algebraic function that is explicitly written out. The problem is motivated by the study of the convergence of the Frobenius–Padé and Hermite–Padé rational approximants.
Keywords:
logarithmic potential, vector equilibrium problem, Nikishin matrix of interaction, equilibrium measure, Frobenius–Padé approximants,
Hermite–Padé approximants.
@article{DANMA_2020_491_a2,
author = {A. I. Bogolyubskii and V. G. Lysov},
title = {Constructive solution of one vector equilibrium problem},
journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
pages = {15--18},
publisher = {mathdoc},
volume = {491},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DANMA_2020_491_a2/}
}
TY - JOUR AU - A. I. Bogolyubskii AU - V. G. Lysov TI - Constructive solution of one vector equilibrium problem JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2020 SP - 15 EP - 18 VL - 491 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2020_491_a2/ LA - ru ID - DANMA_2020_491_a2 ER -
%0 Journal Article %A A. I. Bogolyubskii %A V. G. Lysov %T Constructive solution of one vector equilibrium problem %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2020 %P 15-18 %V 491 %I mathdoc %U http://geodesic.mathdoc.fr/item/DANMA_2020_491_a2/ %G ru %F DANMA_2020_491_a2
A. I. Bogolyubskii; V. G. Lysov. Constructive solution of one vector equilibrium problem. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 15-18. http://geodesic.mathdoc.fr/item/DANMA_2020_491_a2/