New cases of integrable odd-order systems with dissipation
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 95-101
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper shows the integrability of certain classes of odd-order dynamical systems that are homogeneous with respect to some of the variables and in which a system on the tangent bundle of smooth manifolds is distinguished. In this case, the force fields have dissipation of different signs and generalize previously considered cases.
Keywords:
dynamical system, integrability, dissipation, transcendental first integral.
@article{DANMA_2020_491_a19,
author = {M. V. Shamolin},
title = {New cases of integrable odd-order systems with dissipation},
journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
pages = {95--101},
publisher = {mathdoc},
volume = {491},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DANMA_2020_491_a19/}
}
TY - JOUR AU - M. V. Shamolin TI - New cases of integrable odd-order systems with dissipation JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2020 SP - 95 EP - 101 VL - 491 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2020_491_a19/ LA - ru ID - DANMA_2020_491_a19 ER -
M. V. Shamolin. New cases of integrable odd-order systems with dissipation. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 95-101. http://geodesic.mathdoc.fr/item/DANMA_2020_491_a19/