Jacobi stability of a many-body system with modified potential
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 90-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

The evolution of a system of mutually gravitating particles is considered taking into account the energy loss in collisions. Collisions can be described in various ways. One can use the theory of inelastic impact of solids with Newton's recovery coefficient for the relative velocity of bouncing particles. In numerical implementation, the main difficulty of this approach is to track and refine the huge number of time moments of particle collisions. Another approach is to supplement the gravitational potential with the potential of repulsive forces similar to the Lennard-Jones intermolecular forces. Numerical experiments show that, under the Jacobi stability condition, both models lead to a qualitatively identical evolution with the formation of stable configurations. For an infinite number of particles, the probability density function is determined by the system of Vlasov–Boltzmann–Poisson equations. Our proposed methodology corresponds to the use of the Vlasov kinetic equation with a potential of the Lennard–Jones type.
Keywords: $n$-body problem, Lennard–Jones type potential, Jacobi stability.
@article{DANMA_2020_491_a18,
     author = {T. V. Sal'nikova and E. I. Kugushev and S. Ya. Stepanov},
     title = {Jacobi stability of a many-body system with modified potential},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {90--94},
     publisher = {mathdoc},
     volume = {491},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_491_a18/}
}
TY  - JOUR
AU  - T. V. Sal'nikova
AU  - E. I. Kugushev
AU  - S. Ya. Stepanov
TI  - Jacobi stability of a many-body system with modified potential
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 90
EP  - 94
VL  - 491
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_491_a18/
LA  - ru
ID  - DANMA_2020_491_a18
ER  - 
%0 Journal Article
%A T. V. Sal'nikova
%A E. I. Kugushev
%A S. Ya. Stepanov
%T Jacobi stability of a many-body system with modified potential
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 90-94
%V 491
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2020_491_a18/
%G ru
%F DANMA_2020_491_a18
T. V. Sal'nikova; E. I. Kugushev; S. Ya. Stepanov. Jacobi stability of a many-body system with modified potential. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 90-94. http://geodesic.mathdoc.fr/item/DANMA_2020_491_a18/

[1] Kozlov V.V., “Obobschennoe kineticheskoe uravnenie Vlasova”, UMN, 63:4(382) (2008), 93–130 | DOI | MR | Zbl