Differential equations in Banach algebras
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 73-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a complex Banach algebra that is not assumed to be commutative, $n$th-order linear differential equations with constant coefficients are considered. The corresponding algebraic characteristic equation of the $n$th degree is assumed to have $n$ distinct roots for which the Vandermonde matrix is invertible. Analogues of Sylvester's and Vieta's theorems are proved, and a contour integral of Cauchy type is studied.
Keywords: Banach algebra, higher order differential equations, algebraic characteristic equation, Vandermonde matrix, Sylvester's and Vieta's theorems, Cauchy-type contour integral.
@article{DANMA_2020_491_a14,
     author = {A. I. Perov and I. D. Kostrub},
     title = {Differential equations in {Banach} algebras},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {73--77},
     publisher = {mathdoc},
     volume = {491},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_491_a14/}
}
TY  - JOUR
AU  - A. I. Perov
AU  - I. D. Kostrub
TI  - Differential equations in Banach algebras
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 73
EP  - 77
VL  - 491
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_491_a14/
LA  - ru
ID  - DANMA_2020_491_a14
ER  - 
%0 Journal Article
%A A. I. Perov
%A I. D. Kostrub
%T Differential equations in Banach algebras
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 73-77
%V 491
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2020_491_a14/
%G ru
%F DANMA_2020_491_a14
A. I. Perov; I. D. Kostrub. Differential equations in Banach algebras. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 73-77. http://geodesic.mathdoc.fr/item/DANMA_2020_491_a14/

[1] Rudin U., Funktsionalnyi analiz, Mir, M., 1975, 448 pp. | MR

[2] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, IL, M., 1962, 830 pp. | MR

[3] Perov A.I., Kostrub I.D., “Ob ogranichennykh resheniyakh slabo nelineinykh vektorno-matrichnykh differentsialnykh uravnenii $n$-go poryadka”, Cib. mat. zhurn., 57:4 (2016), 830–849 | Zbl

[4] Daletskii Yu.L., Krein M.G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970, 536 pp. | MR

[5] Strelkov S.P., Vvedenie v teoriyu kolebanii, Nauka, M., 1964, 440 pp. | MR

[6] Kurbatov V.G., Kurbatova I.V., “Computation of Green's Function of the Bounded Solutions Problem”, Comput. Methods Appl. Math., 2017 | DOI | MR

[7] Gantmakher F.R., Teoriya matrits, Nauka, M., 1967, 581 pp. | MR

[8] Parodi M., Lokalizatsiya kharakteristicheskikh chisel matrits i ee primenenie, IL, M., 1960, 172 pp.

[9] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972, 740 pp. | MR

[10] Perov A.I., Kostrub I.D., “Ob odnom kvadratnom uravnenii”, Scientific Light. Wroclaw, 1:26 (2019), 33–34

[11] Trenogin V.A., Funktsionalnyi analiz, Nauka, M., 1980, 496 pp. | MR

[12] Gelfond A.O., Ischislenie konechnykh raznostei, Fizmatgiz, M., 1959, 400 pp. | MR

[13] Daletskii Yu.L., “Ob odnom lineinom uravnenii otnositelno elementov normirovannogo koltsa”, UMN, 14:1(85) (1959), 165–168 | MR | Zbl

[14] Ikramov Kh.D., Zadachnik po lineinoi algebre, Nauka, M., 1975, 320 pp. | MR

[15] Glazman I.M., Lyubich Yu.I., Konechnomernyi lineinyi analiz, Nauka, M., 1969, 476 pp. | MR