Differential equations in Banach algebras
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 73-77
Voir la notice de l'article provenant de la source Math-Net.Ru
In a complex Banach algebra that is not assumed to be commutative, $n$th-order linear differential equations with constant coefficients are considered. The corresponding algebraic characteristic equation of the $n$th degree is assumed to have $n$ distinct roots for which the Vandermonde matrix is invertible. Analogues of Sylvester's and Vieta's theorems are proved, and a contour integral of Cauchy type is studied.
Keywords:
Banach algebra, higher order differential equations, algebraic characteristic equation, Vandermonde matrix, Sylvester's and Vieta's theorems,
Cauchy-type contour integral.
@article{DANMA_2020_491_a14,
author = {A. I. Perov and I. D. Kostrub},
title = {Differential equations in {Banach} algebras},
journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
pages = {73--77},
publisher = {mathdoc},
volume = {491},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DANMA_2020_491_a14/}
}
TY - JOUR AU - A. I. Perov AU - I. D. Kostrub TI - Differential equations in Banach algebras JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2020 SP - 73 EP - 77 VL - 491 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2020_491_a14/ LA - ru ID - DANMA_2020_491_a14 ER -
A. I. Perov; I. D. Kostrub. Differential equations in Banach algebras. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 73-77. http://geodesic.mathdoc.fr/item/DANMA_2020_491_a14/