Uniform, on the real line, equiconvergence of spectral expansions for the higher-order differential operators
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 65-67
Voir la notice de l'article provenant de la source Math-Net.Ru
Result on the uniform, over the entire real line, equiconvergence of spectral expansions related to the self-adjoint extension of a general differential operation of any even order with coefficients from the one-dimensional Kato class, with the Fourier integral expansion is presented. The statement is based on the obtained uniform estimates for the spectral function of this operator.
Keywords:
self-adjoint even-order differential operator, spectral expansion, equiconvergence.
@article{DANMA_2020_491_a12,
author = {L. V. Kritskov},
title = {Uniform, on the real line, equiconvergence of spectral expansions for the higher-order differential operators},
journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
pages = {65--67},
publisher = {mathdoc},
volume = {491},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DANMA_2020_491_a12/}
}
TY - JOUR AU - L. V. Kritskov TI - Uniform, on the real line, equiconvergence of spectral expansions for the higher-order differential operators JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2020 SP - 65 EP - 67 VL - 491 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2020_491_a12/ LA - ru ID - DANMA_2020_491_a12 ER -
%0 Journal Article %A L. V. Kritskov %T Uniform, on the real line, equiconvergence of spectral expansions for the higher-order differential operators %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2020 %P 65-67 %V 491 %I mathdoc %U http://geodesic.mathdoc.fr/item/DANMA_2020_491_a12/ %G ru %F DANMA_2020_491_a12
L. V. Kritskov. Uniform, on the real line, equiconvergence of spectral expansions for the higher-order differential operators. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 65-67. http://geodesic.mathdoc.fr/item/DANMA_2020_491_a12/