Uniform, on the real line, equiconvergence of spectral expansions for the higher-order differential operators
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 65-67

Voir la notice de l'article provenant de la source Math-Net.Ru

Result on the uniform, over the entire real line, equiconvergence of spectral expansions related to the self-adjoint extension of a general differential operation of any even order with coefficients from the one-dimensional Kato class, with the Fourier integral expansion is presented. The statement is based on the obtained uniform estimates for the spectral function of this operator.
Keywords: self-adjoint even-order differential operator, spectral expansion, equiconvergence.
@article{DANMA_2020_491_a12,
     author = {L. V. Kritskov},
     title = {Uniform, on the real line, equiconvergence of spectral expansions for the higher-order differential operators},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {65--67},
     publisher = {mathdoc},
     volume = {491},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_491_a12/}
}
TY  - JOUR
AU  - L. V. Kritskov
TI  - Uniform, on the real line, equiconvergence of spectral expansions for the higher-order differential operators
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 65
EP  - 67
VL  - 491
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_491_a12/
LA  - ru
ID  - DANMA_2020_491_a12
ER  - 
%0 Journal Article
%A L. V. Kritskov
%T Uniform, on the real line, equiconvergence of spectral expansions for the higher-order differential operators
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 65-67
%V 491
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2020_491_a12/
%G ru
%F DANMA_2020_491_a12
L. V. Kritskov. Uniform, on the real line, equiconvergence of spectral expansions for the higher-order differential operators. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 65-67. http://geodesic.mathdoc.fr/item/DANMA_2020_491_a12/