Uniform, on the real line, equiconvergence of spectral expansions for the higher-order differential operators
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 65-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

Result on the uniform, over the entire real line, equiconvergence of spectral expansions related to the self-adjoint extension of a general differential operation of any even order with coefficients from the one-dimensional Kato class, with the Fourier integral expansion is presented. The statement is based on the obtained uniform estimates for the spectral function of this operator.
Keywords: self-adjoint even-order differential operator, spectral expansion, equiconvergence.
@article{DANMA_2020_491_a12,
     author = {L. V. Kritskov},
     title = {Uniform, on the real line, equiconvergence of spectral expansions for the higher-order differential operators},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {65--67},
     publisher = {mathdoc},
     volume = {491},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_491_a12/}
}
TY  - JOUR
AU  - L. V. Kritskov
TI  - Uniform, on the real line, equiconvergence of spectral expansions for the higher-order differential operators
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 65
EP  - 67
VL  - 491
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_491_a12/
LA  - ru
ID  - DANMA_2020_491_a12
ER  - 
%0 Journal Article
%A L. V. Kritskov
%T Uniform, on the real line, equiconvergence of spectral expansions for the higher-order differential operators
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 65-67
%V 491
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2020_491_a12/
%G ru
%F DANMA_2020_491_a12
L. V. Kritskov. Uniform, on the real line, equiconvergence of spectral expansions for the higher-order differential operators. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 65-67. http://geodesic.mathdoc.fr/item/DANMA_2020_491_a12/

[1] Bokhner S., Lektsii ob integralakh Fure, Fizmatgiz, M., 1962

[2] Ilin V.A., Antoniu I., “Ravnomernaya na vsei pryamoi $R$ otsenka otkloneniya ot razlagaemoi funktsii ee spektralnogo razlozheniya, otvechayuschego operatoru Shredingera s ogranichennym i izmerimym potentsialom”, Differents. uravneniya, 31:10 (1995), 1649–1657 | MR | Zbl

[3] Levitan B.M., “Ob asimptoticheskom povedenii spektralnoi funktsii i o razlozhenii po sobstvennym funktsiyam samosopryazhennogo differentsialnogo uravneniya vtorogo poryadka. II”, Izv. AN SSSR. Ser. matem., 19:1 (1955), 33–58 | Zbl

[4] Marchenko V.A., “Teoremy tauberova tipa v spektralnom analize differentsialnykh operatorov”, Izv. AN SSSR. Ser. matem., 19:6 (1955), 381–422 | Zbl

[5] Kostyuchenko A.G., “Asimptotika spektralnoi funktsii singulyarnogo differentsialnogo operatora poryadka”, DAN SSSR, 168:2 (1966), 276–279 | Zbl

[6] Minkin A.M., “Equiconvergence theorems for differential operators”, J. Math. Sci., 96:6 (1999), 3631–3715 | DOI | MR | Zbl

[7] Ilin V.A., “Ravnomernaya na vsei pryamoi $R$ ravnoskhodimost s integralom Fure spektralnogo razlozheniya, otvechayuschego samosopryazhennomu rasshireniyu operatora Shredingera s ravnomerno lokalno summiruemym potentsialom”, Differents. uravneniya, 31:12 (1995), 1957–1967 | MR | Zbl

[8] Ilin V.A., Kritskov L.V., “Ravnomernaya na vsei pryamoi $R$ otsenka skorosti skhodimosti spektralnogo razlozheniya, otvechayuschego operatoru Shredingera s summiruemym potentsialom”, Differents. uravneniya, 32:1 (1996), 32–36 | MR | Zbl

[9] Simon B., “Schrodinger semigroups”, Bull. Amer. Math. Soc., 7:3 (1982), 447–526 | DOI | MR | Zbl

[10] Simon B., Operator Theory: A Comprehensive Course of Analysis, v. 4, American Math. Society, Providence (RI), 2015 | MR

[11] Ilin V.A., Spektralnaya teoriya differentsialnykh operatorov. Samosopryazhennye differentsialnye operatory, Nauka, M., 1991

[12] Ilin V.A., Kritskov L.V., “Ravnomernaya na vsei pryamoi otsenka obobschennykh sobstvennykh funktsii odnomernogo operatora Shredingera s ravnomerno lokalno summiruemym potentsialom”, Differents. uravneniya, 31:8 (1995), 1323–1329 | MR | Zbl

[13] Ilin V.A., Moiseev E.I., “Tochnaya po poryadku i ravnomernaya v $R^N$ pri $N = 2$ i $N = 3$ otsenka kvadratov fundamentalnykh funktsii samosopryazhennogo rasshireniya v $R^N$ operatora Shredingera s potentsialom, udovletvoryayuschim usloviyu Kato”, Differents. uravneniya, 32:3 (1996), 357–374 | MR | Zbl

[14] Kritskov L.V., “Otsenka prirascheniya spektralnoi funktsii operatora Shredingera s potentsialom, udovletvoryayuschim usloviyu tipa Kato”, Differents. uravneniya, 35:8 (1999), 1077–1086 | MR | Zbl