Construction of infinite finitely presented nilsemigroup
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 5-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

An infinite finitely presented nilsemigroup with identity $x^9$ = 0 is constructed. This construction answers the question of L.N. Shevrin and M.V. Sapir. The proof is based on the construction of a sequence of geometric complexes, each obtained by gluing several simple 4-cycles (squares). These complexes have certain geometric and combinatorial properties. Actually, the semigroup is the set of word codings of paths on such complexes. Each word codes a path on some complex. Defining relations correspond to pairs of equivalent short paths. The shortest paths in terms of the natural metric are associated with nonzero words in the subgroup. Codings that are not presented by some path or presented by non-shortest paths can be reduced to a zero word.
Keywords: finitely presented semigroups, Burnside-type problems.
@article{DANMA_2020_491_a0,
     author = {A. Ya. Belov and I. A. Ivanov-Pogodaev},
     title = {Construction of infinite finitely presented nilsemigroup},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {5--10},
     publisher = {mathdoc},
     volume = {491},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_491_a0/}
}
TY  - JOUR
AU  - A. Ya. Belov
AU  - I. A. Ivanov-Pogodaev
TI  - Construction of infinite finitely presented nilsemigroup
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 5
EP  - 10
VL  - 491
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_491_a0/
LA  - ru
ID  - DANMA_2020_491_a0
ER  - 
%0 Journal Article
%A A. Ya. Belov
%A I. A. Ivanov-Pogodaev
%T Construction of infinite finitely presented nilsemigroup
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 5-10
%V 491
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2020_491_a0/
%G ru
%F DANMA_2020_491_a0
A. Ya. Belov; I. A. Ivanov-Pogodaev. Construction of infinite finitely presented nilsemigroup. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 5-10. http://geodesic.mathdoc.fr/item/DANMA_2020_491_a0/

[1] Novikov P.S., Adyan S.I., “O beskonechnykh periodicheskikh gruppakh (I-III)”, Izv. AN SSSR. Ser. matem., 32 (1968) | MR

[2] Adyan S.I., “Novye otsenki nechetnykh periodov beskonechnykh bernsaidovykh grupp”, Tr. MIAN, 289, 2015, 41–82 | DOI | Zbl

[3] Sverdlovskaya tetrad: Nereshennye zadachi teorii polugrupp, 3, 1989, 40 pp.

[4] Kharlampovich O.G., Sapir M.V., “Algorithmic problems in varieties”, Intern. J. Algebra and Computation, 5:4-5 (1995), 379–602 | DOI | MR | Zbl

[5] Ivanov-Pogodaev I., Kanel-Belov A., Konstruktsiya beskonechnoi konechno opredelennoi nilpolugruppy, arXiv: 1412.5221