Monte Carlo algorithms for estimating time asymptotics of multiplication particle flow in a random medium
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 490 (2020), pp. 47-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

The fluctuations of the number of scattering and multiplying particles in a random medium are investigated as functions of time. For this purpose, randomized Monte Carlo algorithms for estimating the probabilistic moments of the corresponding exponential asymptotic parameter are constructed.
Keywords: Monte Carlo method, weighted modifications, transport theory, time constant.
@article{DANMA_2020_490_a9,
     author = {G. A. Mikhailov and G. Z. Lotova},
     title = {Monte {Carlo} algorithms for estimating time asymptotics of multiplication particle flow in a random medium},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {47--50},
     publisher = {mathdoc},
     volume = {490},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_490_a9/}
}
TY  - JOUR
AU  - G. A. Mikhailov
AU  - G. Z. Lotova
TI  - Monte Carlo algorithms for estimating time asymptotics of multiplication particle flow in a random medium
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 47
EP  - 50
VL  - 490
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_490_a9/
LA  - ru
ID  - DANMA_2020_490_a9
ER  - 
%0 Journal Article
%A G. A. Mikhailov
%A G. Z. Lotova
%T Monte Carlo algorithms for estimating time asymptotics of multiplication particle flow in a random medium
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 47-50
%V 490
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2020_490_a9/
%G ru
%F DANMA_2020_490_a9
G. A. Mikhailov; G. Z. Lotova. Monte Carlo algorithms for estimating time asymptotics of multiplication particle flow in a random medium. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 490 (2020), pp. 47-50. http://geodesic.mathdoc.fr/item/DANMA_2020_490_a9/

[1] Marchuk G.I., Mikhailov G.A., Nazaraliev M.A. i dr., Metod Monte-Karlo v atmosfernoi optike, Nauka, Novosibirsk, 1976 | MR

[2] Lotova G.Z., Mikhailov G.A., “Novye metody Monte-Karlo dlya resheniya nestatsionarnykh zadach teorii perenosa izlucheniya”, ZhVMiMF, 42:4 (2002), 569–579 | MR | Zbl

[3] Devison B., Teoriya perenosa neitronov, Atomizdat, M., 1960

[4] Marchuk G.I., Metody rascheta yadernykh reaktorov, Gosatomizdat, M., 1961 | MR

[5] Larmier C., Zoia A., Malvagi F., Dumonteil E., Mazzolo A., “Neutron Multiplication in Random Media: Reactivity and Kinetics Parameters”, Annals of Nuclear Energy, 111 (2018), 391–406 | DOI

[6] Romanov Yu.A., “Tochnye resheniya odnoskorostnogo kineticheskogo uravneniya i ikh ispolzovanie dlya rascheta diffuzionnykh zadach”, Issledovanie kriticheskikh parametrov reaktornykh sistem, Atomizdat, M., 1960, 3–26