Metric properties of graphs on Carnot--Carath\'eodory spaces with sub-Lorentzian structure
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 490 (2020), pp. 42-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of a sub-Lorentzian structure with multidimensional time on Carnot–Carathéodory spaces is introduced. It is proved that classes of graph surfaces are spacelike, and a sub-Lorentzian analogue of the area formula is proved.
Keywords: Carnot–Carathéodory space, polynomial $hc$-differential, intrinsic sub-Lorentzian measure, area formula.
@article{DANMA_2020_490_a8,
     author = {M. B. Karmanova},
     title = {Metric properties of graphs on {Carnot--Carath\'eodory} spaces with {sub-Lorentzian} structure},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {42--46},
     publisher = {mathdoc},
     volume = {490},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_490_a8/}
}
TY  - JOUR
AU  - M. B. Karmanova
TI  - Metric properties of graphs on Carnot--Carath\'eodory spaces with sub-Lorentzian structure
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 42
EP  - 46
VL  - 490
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_490_a8/
LA  - ru
ID  - DANMA_2020_490_a8
ER  - 
%0 Journal Article
%A M. B. Karmanova
%T Metric properties of graphs on Carnot--Carath\'eodory spaces with sub-Lorentzian structure
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 42-46
%V 490
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2020_490_a8/
%G ru
%F DANMA_2020_490_a8
M. B. Karmanova. Metric properties of graphs on Carnot--Carath\'eodory spaces with sub-Lorentzian structure. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 490 (2020), pp. 42-46. http://geodesic.mathdoc.fr/item/DANMA_2020_490_a8/

[1] Karmanova M.B., “Grafiki negladkikh kontaktnykh otobrazhenii na gruppakh Karno s sublorentsevoi strukturoi”, DAN, 486:3 (2019), 275–279 | Zbl

[2] Karmanova M.B., DAN, 478:5 (2018), 513–516 | MR | Zbl

[3] Gromov M., Sub-Riemannian Geometry, Birkhäuser Verlag, Basel, 1996, 79–318 | DOI

[4] Basalaev S.G., Vodopyanov S.K., Eurasian Math. J., 4:2 (2013), 10–48 | MR | Zbl

[5] Karmanova M., Vodopyanov S., Analysis and Mathematical Physics, Birkhäuser, Basel, 2009, 233–335 | DOI | MR | Zbl

[6] Postnikov M.M., Lectures in Geometry. Semester V: Lie Groups and Lie Algebras, Nauka, M., 1982 | MR | Zbl

[7] Karmanova M.B., DAN, 473:1 (2017), 17–20 | MR | Zbl

[8] Vodopyanov S., The Interaction of Analysis and Geometry, Contemporary Mathematics, 424, Amer. Math. Soc., Providence, RI, 2007, 247–301 | DOI | MR | Zbl

[9] Karmanova M.B., DAN, 474:1 (2017), 7–10 | MR | Zbl

[10] Karmanova M.B., Sib. mat. zhurn., 58:2 (2017), 305–332 | MR | Zbl