Interpolation problems for functions with zero integrals over balls of fixed radius
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 490 (2020), pp. 20-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $V_r(\mathbb{R}^n)$, $n\ge2$, be the set of functions $f\in L_{\operatorname{loc}}(\mathbb{R}^n)$ with zero integrals over all balls in $\mathbb{R}^n$ of radius $r$. Various interpolation problems for the class $V_r(\mathbb{R}^n)$ are studied. In the case when the set of interpolation nodes is finite, the multiple interpolation problem is solved under general assumptions. For problems with an infinite set of nodes, sufficient solvability conditions are founded. Additionally, we construct a new example of a subset in $\mathbb{R}^n$ for which some nontrivial real analytic function of the class $V_r(\mathbb{R}^n)$ vanishes.
Keywords: interpolation problems, spherical means, mean periodicity.
@article{DANMA_2020_490_a4,
     author = {V. V. Volchkov and Vit. V. Volchkov},
     title = {Interpolation problems for functions with zero integrals over balls of fixed radius},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {20--23},
     publisher = {mathdoc},
     volume = {490},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_490_a4/}
}
TY  - JOUR
AU  - V. V. Volchkov
AU  - Vit. V. Volchkov
TI  - Interpolation problems for functions with zero integrals over balls of fixed radius
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 20
EP  - 23
VL  - 490
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_490_a4/
LA  - ru
ID  - DANMA_2020_490_a4
ER  - 
%0 Journal Article
%A V. V. Volchkov
%A Vit. V. Volchkov
%T Interpolation problems for functions with zero integrals over balls of fixed radius
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 20-23
%V 490
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2020_490_a4/
%G ru
%F DANMA_2020_490_a4
V. V. Volchkov; Vit. V. Volchkov. Interpolation problems for functions with zero integrals over balls of fixed radius. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 490 (2020), pp. 20-23. http://geodesic.mathdoc.fr/item/DANMA_2020_490_a4/

[1] Zalcman L., Approximation by Solutions of Partial Differential Equations, 1992, 185–194 | DOI | Zbl

[2] Volchkov V.V., Volchkov Vit.V., Offbeat Integral Geometry on Symmetric Spaces, Birkhäuser, Basel, 2013, 592 pp. | MR | Zbl

[3] Berenstein K.A., Struppa D., Itogi nauki i tekhn. Sovrem. probl. matem. Fundament. napravleniya, 54, VINITI, M., 1989, 5–111

[4] Zalcman L., Contemp. Math., 278, 2001, 69–74 | DOI | MR | Zbl

[5] Volchkov V.V., Integral geometry and convolution equations, Kluwer, Dordrecht, 2003, 454 pp. | MR | Zbl

[6] Volchkov V.V., Volchkov Vit.V., Harmonic analysis of mean periodic functions on symmetric spaces and the Heisenberg group, Springer, L., 2009, 671 pp. | MR | Zbl

[7] Ion F., Ploskie volny i sfericheskie srednie v primenenii k differentsialnym uravneniyam s chastnymi proizvodnymi, IL, M., 1958, 158 pp.

[8] Smith J.D., Proc. Cambridge Philos. Soc, 72 (1972), 403–416 | DOI | MR | Zbl

[9] Rawat R., Sitaram A., Israel J. Math., 91 (1995), 307–316 | DOI | MR | Zbl

[10] Thangavelu S., J. Anal. Math., 63 (1994), 225–286 | DOI | MR

[11] Evgrafov M.A., Asimptoticheskie otsenki i tselye funktsii, Fizmatgiz, M., 1962, 320 pp. | MR

[12] Schneider R., J. Math. Anal. Appl., 26 (1969), 381–384 | DOI | MR | Zbl

[13] Volchkov V.V., Matem. sbornik, 188:9 (1997), 13–30 | DOI | MR | Zbl

[14] Volchkov Vit.V., Volchkova N.P., Sib. mat. zhurn., 58:3 (2017), 543–552 | MR | Zbl

[15] Berkani M., El Harchaoui, Gay R., Complex Variables, 43 (2000), 29–57 | MR | Zbl