Completeness criteria for a linear model of classification algorithms with respect to families of decision rules
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 490 (2020), pp. 67-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the framework of Zhuravlev’s algebraic approach to classification problems, a linear model of algorithms is investigated (estimates of class membership are generated by linear regressions). The possibility of weakening the completeness requirement (obtaining an arbitrary estimation matrix) in order to obtain any classification of a fixed set of objects by using special decision rules is investigated.
Keywords: classification, linear algorithms, algebraic approach, correctness, completeness.
@article{DANMA_2020_490_a14,
     author = {A. G. Dyakonov and A. M. Golovina},
     title = {Completeness criteria for a linear model of classification algorithms with respect to families of decision rules},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {67--70},
     publisher = {mathdoc},
     volume = {490},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_490_a14/}
}
TY  - JOUR
AU  - A. G. Dyakonov
AU  - A. M. Golovina
TI  - Completeness criteria for a linear model of classification algorithms with respect to families of decision rules
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 67
EP  - 70
VL  - 490
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_490_a14/
LA  - ru
ID  - DANMA_2020_490_a14
ER  - 
%0 Journal Article
%A A. G. Dyakonov
%A A. M. Golovina
%T Completeness criteria for a linear model of classification algorithms with respect to families of decision rules
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 67-70
%V 490
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2020_490_a14/
%G ru
%F DANMA_2020_490_a14
A. G. Dyakonov; A. M. Golovina. Completeness criteria for a linear model of classification algorithms with respect to families of decision rules. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 490 (2020), pp. 67-70. http://geodesic.mathdoc.fr/item/DANMA_2020_490_a14/

[1] Zhuravlëv Yu.I., “Ob algebraicheskom podkhode k resheniyu zadach raspoznavaniya ili klassifikatsii”, Problemy kibernetiki, 1978, no. 33, 5–68 | Zbl

[2] Zhuravlëv Yu.I., “Korrektnye algebry nad mnozhestvami nekorrektnykh (evristicheskikh) algoritmov. Chast I”, Kibernetika, 1977, no. 4, 5–17

[3] Zhuravlëv Yu.I., “Korrektnye algebry nad mnozhestvami nekorrektnykh (evristicheskikh) algoritmov. Chast II”, Kibernetika, 1977, no. 6, 21–27 | Zbl

[4] Zhuravlëv Yu.I., “Korrektnye algebry nad mnozhestvami nekorrektnykh (evristicheskikh) algoritmov. Chast III”, Kibernetika, 1978, no. 2, 35–43 | Zbl

[5] Hastie T., Tibshirani R., Friedman J., The Elements of Statistical Learning, Springer-Verlag, N.Y., 2009, 745 pp. | MR | Zbl

[6] Zhuravlëv Yu.I., Rudakov K.V., “Ob algebraicheskoi korrektsii protsedur obrabotki (preobrazovaniya) informatsii”, Problemy prikladnoi matematiki i informatiki, 1987, 187–198 | MR | Zbl

[7] Rudakov K.V., “Ob algebraicheskoi teorii universalnykh i lokalnykh ogranichenii dlya zadach klassifikatsii”, Raspoznavanie, klassifikatsiya, prognoz, Nauka, M., 1989, 176–201

[8] Dyakonov A.G., “Algebra nad algoritmami vychisleniya otsenok: monotonnye reshayuschie pravila”, ZhVMiMF, 45:10 (2005), 1893–1904 | MR | Zbl

[9] Dyakonov A.G., “Algebraicheskie zamykaniya obobschennoi modeli algoritmov vychisleniya otsenok”, DAN, 423:4 (2008), 461–464

[10] Grigorios T., Apostolos P., Weining Q., Stavros V., D'yakonov A., Puurula A., Read J., Svec J., and Semenov S., “Wise 2014 challenge: Multi-label classification of print media articles to topics”, Lecture Notes in Computer Science, 8787, 2014, 541–548 | DOI