Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DANMA_2020_490_a14, author = {A. G. Dyakonov and A. M. Golovina}, title = {Completeness criteria for a linear model of classification algorithms with respect to families of decision rules}, journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a}, pages = {67--70}, publisher = {mathdoc}, volume = {490}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DANMA_2020_490_a14/} }
TY - JOUR AU - A. G. Dyakonov AU - A. M. Golovina TI - Completeness criteria for a linear model of classification algorithms with respect to families of decision rules JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2020 SP - 67 EP - 70 VL - 490 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2020_490_a14/ LA - ru ID - DANMA_2020_490_a14 ER -
%0 Journal Article %A A. G. Dyakonov %A A. M. Golovina %T Completeness criteria for a linear model of classification algorithms with respect to families of decision rules %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2020 %P 67-70 %V 490 %I mathdoc %U http://geodesic.mathdoc.fr/item/DANMA_2020_490_a14/ %G ru %F DANMA_2020_490_a14
A. G. Dyakonov; A. M. Golovina. Completeness criteria for a linear model of classification algorithms with respect to families of decision rules. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 490 (2020), pp. 67-70. http://geodesic.mathdoc.fr/item/DANMA_2020_490_a14/
[1] Zhuravlëv Yu.I., “Ob algebraicheskom podkhode k resheniyu zadach raspoznavaniya ili klassifikatsii”, Problemy kibernetiki, 1978, no. 33, 5–68 | Zbl
[2] Zhuravlëv Yu.I., “Korrektnye algebry nad mnozhestvami nekorrektnykh (evristicheskikh) algoritmov. Chast I”, Kibernetika, 1977, no. 4, 5–17
[3] Zhuravlëv Yu.I., “Korrektnye algebry nad mnozhestvami nekorrektnykh (evristicheskikh) algoritmov. Chast II”, Kibernetika, 1977, no. 6, 21–27 | Zbl
[4] Zhuravlëv Yu.I., “Korrektnye algebry nad mnozhestvami nekorrektnykh (evristicheskikh) algoritmov. Chast III”, Kibernetika, 1978, no. 2, 35–43 | Zbl
[5] Hastie T., Tibshirani R., Friedman J., The Elements of Statistical Learning, Springer-Verlag, N.Y., 2009, 745 pp. | MR | Zbl
[6] Zhuravlëv Yu.I., Rudakov K.V., “Ob algebraicheskoi korrektsii protsedur obrabotki (preobrazovaniya) informatsii”, Problemy prikladnoi matematiki i informatiki, 1987, 187–198 | MR | Zbl
[7] Rudakov K.V., “Ob algebraicheskoi teorii universalnykh i lokalnykh ogranichenii dlya zadach klassifikatsii”, Raspoznavanie, klassifikatsiya, prognoz, Nauka, M., 1989, 176–201
[8] Dyakonov A.G., “Algebra nad algoritmami vychisleniya otsenok: monotonnye reshayuschie pravila”, ZhVMiMF, 45:10 (2005), 1893–1904 | MR | Zbl
[9] Dyakonov A.G., “Algebraicheskie zamykaniya obobschennoi modeli algoritmov vychisleniya otsenok”, DAN, 423:4 (2008), 461–464
[10] Grigorios T., Apostolos P., Weining Q., Stavros V., D'yakonov A., Puurula A., Read J., Svec J., and Semenov S., “Wise 2014 challenge: Multi-label classification of print media articles to topics”, Lecture Notes in Computer Science, 8787, 2014, 541–548 | DOI