"Hausdorff distance" via conical cocompletion
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 51 (2010) no. 1, article no. 3, 26 p.

Voir la notice de l'article provenant de la source Numdam

@article{CTGDC_2010__51_1_51_0,
     author = {Stubbe, Isar},
     title = {"Hausdorff distance" via conical cocompletion},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     eid = {3},
     pages = {51--76},
     publisher = {Andr\'ee CHARLES EHRESMANN},
     volume = {51},
     number = {1},
     year = {2010},
     mrnumber = {2650579},
     zbl = {1260.18009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CTGDC_2010__51_1_51_0/}
}
TY  - JOUR
AU  - Stubbe, Isar
TI  - "Hausdorff distance" via conical cocompletion
JO  - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY  - 2010
SP  - 51
EP  - 76
VL  - 51
IS  - 1
PB  - Andrée CHARLES EHRESMANN
UR  - http://geodesic.mathdoc.fr/item/CTGDC_2010__51_1_51_0/
LA  - en
ID  - CTGDC_2010__51_1_51_0
ER  - 
%0 Journal Article
%A Stubbe, Isar
%T "Hausdorff distance" via conical cocompletion
%J Cahiers de Topologie et Géométrie Différentielle Catégoriques
%D 2010
%P 51-76
%V 51
%N 1
%I Andrée CHARLES EHRESMANN
%U http://geodesic.mathdoc.fr/item/CTGDC_2010__51_1_51_0/
%G en
%F CTGDC_2010__51_1_51_0
Stubbe, Isar. "Hausdorff distance" via conical cocompletion. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 51 (2010) no. 1, article  no. 3, 26 p. http://geodesic.mathdoc.fr/item/CTGDC_2010__51_1_51_0/

[1] [A. Akhvlediani, M. M. Clementino and W. Tholen, 2009] On the categorical meaning of Hausdorff and Gromov distances I, arxiv:0901.0618v1. | MR | Zbl

[2] [J. Bénabou, 1967] Introduction to bicategories, Lecture Notes in Math. 47, pp. 1-77. | MR

[3] [M. H. Albert and G. M. Kelly, 1988] The closure of a class of colimits, J. Pure Appl. Algebra 51, pp. 1-17. | MR | Zbl

[4] [G.M. Kelly and V. Schmitt, 2005] Notes on enriched categories with colimits of some class, Theory Appl. Categ. 14, pp. 399-423. | MR | EuDML | Zbl

[5] [A. Kock, 1972] Monads for which structures are adjoint to units (Version 1), Aarhus Preprint Series 35.

[6] [A. Kock, 1995] Monads for which structures are adjoint to units, J. Pure Appl. Algebra 104, pp. 41-59. | MR | Zbl

[7] [F. W. Lawvere, 1973] Metric spaces, generalized logic, and closed categories, Rend. Sem. Mat. Fis. Milano 43, pp. 135-166. Also in: Reprints in Theory Appl. of Categ. 1, 2002. | MR | Zbl

[8] [J. Paseka and J. Rosický, 2000] Quantales, pp. 245-262 in: Current research in operational quantum logic, Fund. Theories Phys. 111, Kluwer, Dordrecht. | MR | Zbl

[9] [K. I. Rosenthal, 1996] The theory of quantaloids, Pitman Research Notes in Mathematics Series 348, Longman, Harlow. | MR | Zbl

[10] [R. Street, 1981] Cauchy characterization of enriched categories Rend. Sem. Mat. Fis. Milano 51, pp. 217-233. Also in: Reprints Theory Appl. Categ. 4, 2004. | MR | Zbl

[11] [R. Street, 1983] Enriched categories and cohomology, Questiones Math. 6, pp. 265-283. | MR | Zbl

[12] [R. Street, 1983] Absolute colimits in enriched categories, Cahiers Topologie Géom. Différentielle 24, pp. 377-379. | MR | EuDML | Zbl | mathdoc-id

[13] [I. Stubbe, 2005] Categorical structures enriched in a quantaloid: categories, distributors and functors, Theory Appl. Categ. 14, pp. 1-45. | MR | EuDML | Zbl

[14] [I. Stubbe, 2006] Categorical structures enriched in a quantaloid: tensored and cotensored categories, Theory Appl. Categ. 16, pp. 283-306. | MR | EuDML | Zbl

[15] [V. Schmitt, 2006] Flatness, preorders and general metric spaces, to appear in Georgain Math. Journal. See also: arxiv:math/0602463vl.

[16] [V. Zöberlein, 1976] Doctrines on 2-categories, Math. Z. 148, pp. 267-279. | MR | EuDML | Zbl

[17] [R. F. C. Walters, 1981] Sheaves and Cauchy-complete categories, Cahiers Topol. Géom. Différ. Catég. 22, pp. 283-286. | MR | EuDML | Zbl | mathdoc-id