Equational properties of recursive program scheme solutions
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 50 (2009) no. 1, article no. 2, 44 p.

Voir la notice de l'article provenant de la source Numdam

@article{CTGDC_2009__50_1_23_0,
     author = {Milius, Stefan and Moss, Lawrence S.},
     title = {Equational properties of recursive program scheme solutions},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     eid = {2},
     pages = {23--66},
     publisher = {Andr\'ee CHARLES EHRESMANN},
     volume = {50},
     number = {1},
     year = {2009},
     mrnumber = {2512521},
     zbl = {1170.68009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CTGDC_2009__50_1_23_0/}
}
TY  - JOUR
AU  - Milius, Stefan
AU  - Moss, Lawrence S.
TI  - Equational properties of recursive program scheme solutions
JO  - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY  - 2009
SP  - 23
EP  - 66
VL  - 50
IS  - 1
PB  - Andrée CHARLES EHRESMANN
UR  - http://geodesic.mathdoc.fr/item/CTGDC_2009__50_1_23_0/
LA  - en
ID  - CTGDC_2009__50_1_23_0
ER  - 
%0 Journal Article
%A Milius, Stefan
%A Moss, Lawrence S.
%T Equational properties of recursive program scheme solutions
%J Cahiers de Topologie et Géométrie Différentielle Catégoriques
%D 2009
%P 23-66
%V 50
%N 1
%I Andrée CHARLES EHRESMANN
%U http://geodesic.mathdoc.fr/item/CTGDC_2009__50_1_23_0/
%G en
%F CTGDC_2009__50_1_23_0
Milius, Stefan; Moss, Lawrence S. Equational properties of recursive program scheme solutions. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 50 (2009) no. 1, article  no. 2, 44 p. http://geodesic.mathdoc.fr/item/CTGDC_2009__50_1_23_0/

[1] P. Aczel, J. Adámek, S. Milius and J. Velebil, Infinite trees and completely iterative theories: A coalgebraic view, Theoret. Comput. Sci. 300 (2003), 1-45. | MR | Zbl

[2] J. Adámek, S. Milius and J. Velebil, Elgot Algebras, Log. Methods Comput. Sci., Vol. 2 (5:4), 31 pp. | MR | Zbl

[3] J. Adámek, S. Milius and J. Velebil, Equational Properties of Iterative Monads, submitted. | MR | Zbl

[4] M. F. Barnsley, Fractals Everywhere, Academic Press 1988. | MR | Zbl

[5] S. L. Bloom and Z. Ésik, Iteration Theories: The Equational Logic of Iterative Processes, EATCS Monographs on Theoretical Computer Science, Springer Verlag, 1993. | MR | Zbl

[6] F. Borceux, Handbook of Categorical Algebra 2: Categories and Structures, Vol. 51 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1994. | MR | Zbl

[7] R. M. Burstall and J. Darlington, A Transformation System for Developing Recursive Programs, J. ACM, 24:1 (1977), 44-67. | MR | Zbl

[8] B. Courcelle, Fundamental Properties of Infinite Trees, Theoret. Comput. Sci. 25 (1983), no. 2, 95-169. | MR | Zbl

[9] B. Courcelle, Recursive Applicative Program Schemes. In J. van Leeuwen, ed., Handbook of Theoretical Computer Science, Vol. B, 459-492, Elsevier, Amsterdam, 1990. | MR | Zbl

[10] I. Guessarian, Algebraic Semantics. Lecture Notes in Comput. Sci., Vol. 99, Springer Verlag, 1981. | MR | Zbl

[11] A. J. C. Hurkens, M. Mcarthur, Y. N. Moschovakis, L. S. Moss and G. Whitney, The Logic of Recursive Equations, J. Symbolic Logic 63 (1998), no. 2, 451-478. | MR | Zbl

[12] J. Lambek, A Fixpoint Theorem for Complete Categories, Math. Z. 103 (1968), 151-161. | MR | EuDML | Zbl

[13] S. Mac Lane, Categories for the Working Mathematician, 2nd edition, Springer Verlag, 1998. | MR | Zbl

[14] J. G. Mersch, Equational Logic of Recursive Program Schemes, PhD thesis, Indiana University, Bloomington, 2004. | MR | Zbl

[15] J. G. Mersch, Equational Logic of Recursive Program Schemes, in J. Fiadeiro et al (eds.): Algebra and Coalgebra in Computer Science: First International Conference (CALCO 2005), Proceedings, Lecture Notes in Comput. Sci., Vol. 3629, 278-292, Springer Verlag, 2005. | MR | Zbl

[16] S. Milius, Completely Iterative Algebras and Completely Iterative Monads, Inform. and Comput. 196 (2005), 1-41. | MR | Zbl

[17] S. Milius and L. S. Moss, The Category Theoretic Solution of Recursive Program Schemes, Theoret. Comput. Sci. 366 (2006), 3-59. | MR | Zbl

[18] S. Milius and L. S. Moss, The Category Theoretic Solution of Recursive Program Schemes, full version, available at the URL http://www.stefan-milius.eu. | Zbl

[19] S. Milius and L. S. Moss, Corrigendum to [17], Theoret. Comput. Sci. 403 (2008), 409-415. | MR

[20] L. S. Moss, Parametric Corecursion, Theoret. Comput. Sci. 260 (2001), no. 1-2, 139-163. | MR | Zbl

[21] L. S. Moss, Recursion and Corecursion Have the Same Equational Logic, Theoret. Comput. Sci. 294 (2003), no. 1-2, 233-267. | MR | Zbl

[22] Y. Moschovakis, The Logic of Functional Recursion. In M. L. Dalla Chiara et al (eds.) Logic and scientific methods, Synthese Lib., 259, Kluwer Acad. Publ., Dordrecht, 1997, 179-207. | MR | Zbl

[23] M. Nivat, On the Interpretation of Recursive Polyadic Program Schemes, Symposia Mathematica XV (1975), 255-281. | MR