Voir la notice de l'article provenant de la source Computer Science and Information Systems website
@article{CSIS_2023_20_4_a21, author = {Feng Lijuan and Zhang Fan}, title = {A {Novel} {Feature} {Fusion} {Model} {Based} on {Non-subsampled} {Shear-wave} {Transform} for {Retinal} {Blood} {Vessel} {Segmentation}}, journal = {Computer Science and Information Systems}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2023}, url = {http://geodesic.mathdoc.fr/item/CSIS_2023_20_4_a21/} }
TY - JOUR AU - Feng Lijuan AU - Zhang Fan TI - A Novel Feature Fusion Model Based on Non-subsampled Shear-wave Transform for Retinal Blood Vessel Segmentation JO - Computer Science and Information Systems PY - 2023 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CSIS_2023_20_4_a21/ ID - CSIS_2023_20_4_a21 ER -
%0 Journal Article %A Feng Lijuan %A Zhang Fan %T A Novel Feature Fusion Model Based on Non-subsampled Shear-wave Transform for Retinal Blood Vessel Segmentation %J Computer Science and Information Systems %D 2023 %V 20 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CSIS_2023_20_4_a21/ %F CSIS_2023_20_4_a21
Feng Lijuan; Zhang Fan. A Novel Feature Fusion Model Based on Non-subsampled Shear-wave Transform for Retinal Blood Vessel Segmentation. Computer Science and Information Systems, Tome 20 (2023) no. 4. http://geodesic.mathdoc.fr/item/CSIS_2023_20_4_a21/