A QPSO Algorithm Based on Hierarchical Weight and Its Application in Cloud Computing Task Scheduling
Computer Science and Information Systems, Tome 18 (2021) no. 1.

Voir la notice de l'article provenant de la source Computer Science and Information Systems website

The computing method of the average optimal position is one of the most important factors that affect the optimization performance of the QPSO algorithm. Therefore, a particle position weight computing method based on particle fitness value grading is proposed, which is called HWQPSO (hierarchical weight QPSO). In this method, the higher the fitness value of a particle, the higher the level of the particle, and the greater the weight. Particles at different levels have different weights, while particles at the same level have the same weight. Through this method, the excellent particles have higher average optimal position weight, and at the same time, the absolute weight of a few particles is avoided, so that the algorithm can quickly and stably converge to the optimal solution, and improve the optimization ability and efficiency of the algorithm. In order to verify the effectiveness of the method, five standard test functions are selected to test the performance of HWQPSO, QPSO, DWC-QPSO and LTQPSO algorithm, and the algorithms are applied to the task scheduling of the cloud computing platform. Through the test experiment and application comparison, the results show that the HWQPSO algorithm can converge to the optimal solution of the test function faster than the other three algorithms. It can also find the task scheduling scheme with the shortest time consumption and the most balanced computing resource load in the cloud platform. In the experiment, compared with QPSO, DWC-QPSO and LTQPSO algorithm, HWQPSO execution time of the maximum task scheduling was reduced by 35%, 23% and 21% respectively.
Keywords: QPSO algorithm, hierarchical weight, cloud computing, task scheduling, average optimal location
@article{CSIS_2021_18_1_a10,
     author = {Guolong Yu and Yong Zhao and Zhongwei Cui and Yu Zuo},
     title = {A {QPSO} {Algorithm} {Based} on {Hierarchical} {Weight} and {Its} {Application} in {Cloud} {Computing} {Task} {Scheduling}},
     journal = {Computer Science and Information Systems},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2021},
     url = {http://geodesic.mathdoc.fr/item/CSIS_2021_18_1_a10/}
}
TY  - JOUR
AU  - Guolong Yu
AU  - Yong Zhao
AU  - Zhongwei Cui
AU  - Yu Zuo
TI  - A QPSO Algorithm Based on Hierarchical Weight and Its Application in Cloud Computing Task Scheduling
JO  - Computer Science and Information Systems
PY  - 2021
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CSIS_2021_18_1_a10/
ID  - CSIS_2021_18_1_a10
ER  - 
%0 Journal Article
%A Guolong Yu
%A Yong Zhao
%A Zhongwei Cui
%A Yu Zuo
%T A QPSO Algorithm Based on Hierarchical Weight and Its Application in Cloud Computing Task Scheduling
%J Computer Science and Information Systems
%D 2021
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CSIS_2021_18_1_a10/
%F CSIS_2021_18_1_a10
Guolong Yu; Yong Zhao; Zhongwei Cui; Yu Zuo. A QPSO Algorithm Based on Hierarchical Weight and Its Application in Cloud Computing Task Scheduling. Computer Science and Information Systems, Tome 18 (2021) no. 1. http://geodesic.mathdoc.fr/item/CSIS_2021_18_1_a10/