A Homomorphic-encryption-based Vertical Federated Learning Scheme for Rick Management
Computer Science and Information Systems, Tome 17 (2020) no. 3.

Voir la notice de l'article provenant de la source Computer Science and Information Systems website

With continuous improvements of computing power, great progresses in algorithms and massive growth of data, artificial intelligence technologies have entered the third rapid development era. However, With the great improvements in artificial intelligence and the arrival of the era of big data, contradictions between data sharing and user data privacy have become increasingly prominent. Federated learning is a technology that can ensure the user privacy and train a better model from different data providers. In this paper, we design a vertical federated learning system for the for Bayesian machine learning with the homomorphic encryption. During the training progress, raw data are leaving locally, and encrypted model information is exchanged. The model trained by this system is comparable (up to 90%) to those models trained by a single union server under the consideration of privacy. This system can be widely used in risk control, medical, financial, education and other fields. It is of great significance to solve data islands problem and protect users’ privacy.
Keywords: Data Security, Privacy Preservation, Federated Learning, EM Algorithm, Homomorphic Encryption
@article{CSIS_2020_17_3_a9,
     author = {Wei Ou and Jianhuan Zeng and Zijun Guo and Wanqin Yan and Dingwan Liu and Stelios Fuentes},
     title = {A {Homomorphic-encryption-based} {Vertical} {Federated} {Learning} {Scheme} for {Rick} {Management}},
     journal = {Computer Science and Information Systems},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2020},
     url = {http://geodesic.mathdoc.fr/item/CSIS_2020_17_3_a9/}
}
TY  - JOUR
AU  - Wei Ou
AU  - Jianhuan Zeng
AU  - Zijun Guo
AU  - Wanqin Yan
AU  - Dingwan Liu
AU  - Stelios Fuentes
TI  - A Homomorphic-encryption-based Vertical Federated Learning Scheme for Rick Management
JO  - Computer Science and Information Systems
PY  - 2020
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CSIS_2020_17_3_a9/
ID  - CSIS_2020_17_3_a9
ER  - 
%0 Journal Article
%A Wei Ou
%A Jianhuan Zeng
%A Zijun Guo
%A Wanqin Yan
%A Dingwan Liu
%A Stelios Fuentes
%T A Homomorphic-encryption-based Vertical Federated Learning Scheme for Rick Management
%J Computer Science and Information Systems
%D 2020
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CSIS_2020_17_3_a9/
%F CSIS_2020_17_3_a9
Wei Ou; Jianhuan Zeng; Zijun Guo; Wanqin Yan; Dingwan Liu; Stelios Fuentes. A Homomorphic-encryption-based Vertical Federated Learning Scheme for Rick Management. Computer Science and Information Systems, Tome 17 (2020) no. 3. http://geodesic.mathdoc.fr/item/CSIS_2020_17_3_a9/