A Distributed Near-Optimal LSH-based Framework for Privacy-Preserving Record Linkage
Computer Science and Information Systems, Tome 11 (2014) no. 2
Cet article a éte moissonné depuis la source Computer Science and Information Systems website
In this paper, we present a framework which relies on the Map/Reduce paradigm in order to distribute computations among underutilized commodity hardware resources uniformly, without imposing an extra overhead on the existing infrastructure. The volume of the distance computations, required for records comparison, is largely reduced by utilizing the so-called Locality-Sensitive Hashing technique, which is optimally tuned in order to avoid highly redundant computations. Experimental results illustrate the effectiveness of our distributed framework in finding the matched record pairs in voluminous data sets.
Keywords:
Locality-Sensitive Hashing, Bloom filter, Map/Reduce
@article{CSIS_2014_11_2_a16,
author = {Dimitrios Karapiperis and Vassilios S. Verykios},
title = {A {Distributed} {Near-Optimal} {LSH-based} {Framework} for {Privacy-Preserving} {Record} {Linkage}},
journal = {Computer Science and Information Systems},
year = {2014},
volume = {11},
number = {2},
url = {http://geodesic.mathdoc.fr/item/CSIS_2014_11_2_a16/}
}
TY - JOUR AU - Dimitrios Karapiperis AU - Vassilios S. Verykios TI - A Distributed Near-Optimal LSH-based Framework for Privacy-Preserving Record Linkage JO - Computer Science and Information Systems PY - 2014 VL - 11 IS - 2 UR - http://geodesic.mathdoc.fr/item/CSIS_2014_11_2_a16/ ID - CSIS_2014_11_2_a16 ER -
Dimitrios Karapiperis; Vassilios S. Verykios. A Distributed Near-Optimal LSH-based Framework for Privacy-Preserving Record Linkage. Computer Science and Information Systems, Tome 11 (2014) no. 2. http://geodesic.mathdoc.fr/item/CSIS_2014_11_2_a16/