Integrating Instance-level and Attribute-level Knowledge into Document Clustering
Computer Science and Information Systems, Tome 8 (2011) no. 3
Cet article a éte moissonné depuis la source Computer Science and Information Systems website
In this paper, we present a document clustering framework incorporating instance-level knowledge in the form of pairwise constraints and attribute-level knowledge in the form of keyphrases. Firstly, we initialize weights based on metric learning with pairwise constraints, then simultaneously learn two kinds of knowledge by combining the distance-based and the constraint-based approaches, finally evaluate and select clustering result based on the degree of users’ satisfaction. The experimental results demonstrate the effectiveness and potential of the proposedmethod.
Keywords:
document clustering, pairwise constraints, keyphrases
@article{CSIS_2011_8_3_a6,
author = {Jinlong Wang and Shunyao Wu and Gang Li and Zhe Wei},
title = {Integrating {Instance-level} and {Attribute-level} {Knowledge} into {Document} {Clustering}},
journal = {Computer Science and Information Systems},
year = {2011},
volume = {8},
number = {3},
url = {http://geodesic.mathdoc.fr/item/CSIS_2011_8_3_a6/}
}
TY - JOUR AU - Jinlong Wang AU - Shunyao Wu AU - Gang Li AU - Zhe Wei TI - Integrating Instance-level and Attribute-level Knowledge into Document Clustering JO - Computer Science and Information Systems PY - 2011 VL - 8 IS - 3 UR - http://geodesic.mathdoc.fr/item/CSIS_2011_8_3_a6/ ID - CSIS_2011_8_3_a6 ER -
Jinlong Wang; Shunyao Wu; Gang Li; Zhe Wei. Integrating Instance-level and Attribute-level Knowledge into Document Clustering. Computer Science and Information Systems, Tome 8 (2011) no. 3. http://geodesic.mathdoc.fr/item/CSIS_2011_8_3_a6/