Microarray Missing Values Imputation Methods: Critical Analysis Review
Computer Science and Information Systems, Tome 6 (2009) no. 2.

Voir la notice de l'article provenant de la source Computer Science and Information Systems website

Gene expression data often contain missing expression values. For the purpose of conducting an effective clustering analysis and since many algorithms for gene expression data analysis require a complete matrix of gene array values, choosing the most effective missing value estimation method is necessary. In this paper, the most commonly used imputation methods from literature are critically reviewed and analyzed to explain the proper use, weakness and point the observations on each published method. From the conducted analysis, we conclude that the Local Least Square (LLS) and Support Vector Regression (SVR) algorithms have achieved the best performances. SVR can be considered as a complement algorithm for LLS especially when applied to noisy data. However, both algorithms suffer from some deficiencies presented in choosing the value of Number of Selected Genes (K) and the appropriate kernel function. To overcome these drawbacks, the need for new method that automatically chooses the parameters of the function and it also has an appropriate computational complexity is imperative.
Keywords: Completely at random (MCAR), Missing At Random (MAR), Sequential K-Nearest Neighbors (SKNN), Gene Ontology (GO), Singular Value Decomposition (SVD), Least Squares Imputation (LSI), Local Least Square Imputation (LLSI), Bayesian Principal Component Analysis (BPCA) and Fixed Rank Approximation Method (FRAA)
@article{CSIS_2009_6_2_a8,
     author = {Mou'ath Hourani and Ibrahiem M. M. El Emary},
     title = {Microarray {Missing} {Values} {Imputation} {Methods:} {Critical} {Analysis} {Review}},
     journal = {Computer Science and Information Systems},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2009},
     url = {http://geodesic.mathdoc.fr/item/CSIS_2009_6_2_a8/}
}
TY  - JOUR
AU  - Mou'ath Hourani
AU  - Ibrahiem M. M. El Emary
TI  - Microarray Missing Values Imputation Methods: Critical Analysis Review
JO  - Computer Science and Information Systems
PY  - 2009
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CSIS_2009_6_2_a8/
ID  - CSIS_2009_6_2_a8
ER  - 
%0 Journal Article
%A Mou'ath Hourani
%A Ibrahiem M. M. El Emary
%T Microarray Missing Values Imputation Methods: Critical Analysis Review
%J Computer Science and Information Systems
%D 2009
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CSIS_2009_6_2_a8/
%F CSIS_2009_6_2_a8
Mou'ath Hourani; Ibrahiem M. M. El Emary. Microarray Missing Values Imputation Methods: Critical Analysis Review. Computer Science and Information Systems, Tome 6 (2009) no. 2. http://geodesic.mathdoc.fr/item/CSIS_2009_6_2_a8/