Improving Categorical Data Clustering Algorithm by Weighting Uncommon Attribute Value Matches
Computer Science and Information Systems, Tome 3 (2006) no. 1.

Voir la notice de l'article provenant de la source Computer Science and Information Systems website

This paper presents an improved Squeezer algorithm for categorical data clustering by giving greater weight to uncommon attribute value matches in similarity computations. Experimental results on real life datasets show that, the modified algorithm is superior to the original Squeezer algorithm and other clustering algorithm with respect to clustering accuracy.
@article{CSIS_2006_3_1_a2,
     author = {Zengyou He and Xiaofei Xu and Shenchun Deng},
     title = {Improving {Categorical} {Data} {Clustering} {Algorithm} by {Weighting} {Uncommon} {Attribute} {Value} {Matches}},
     journal = {Computer Science and Information Systems},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2006},
     url = {http://geodesic.mathdoc.fr/item/CSIS_2006_3_1_a2/}
}
TY  - JOUR
AU  - Zengyou He
AU  - Xiaofei Xu
AU  - Shenchun Deng
TI  - Improving Categorical Data Clustering Algorithm by Weighting Uncommon Attribute Value Matches
JO  - Computer Science and Information Systems
PY  - 2006
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CSIS_2006_3_1_a2/
ID  - CSIS_2006_3_1_a2
ER  - 
%0 Journal Article
%A Zengyou He
%A Xiaofei Xu
%A Shenchun Deng
%T Improving Categorical Data Clustering Algorithm by Weighting Uncommon Attribute Value Matches
%J Computer Science and Information Systems
%D 2006
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CSIS_2006_3_1_a2/
%F CSIS_2006_3_1_a2
Zengyou He; Xiaofei Xu; Shenchun Deng. Improving Categorical Data Clustering Algorithm by Weighting Uncommon Attribute Value Matches. Computer Science and Information Systems, Tome 3 (2006) no. 1. http://geodesic.mathdoc.fr/item/CSIS_2006_3_1_a2/