Keywords: Almost Kenmotsu manifolds; Semisymmetry; Pseudosymmetry; Hyperbolic space.
@article{COMIM_2021_29_3_a9,
author = {Dey, Dibakar and Majhi, Pradip},
title = {Some type of semisymmetry on two classes of almost {Kenmotsu} manifolds},
journal = {Communications in Mathematics},
pages = {457--471},
year = {2021},
volume = {29},
number = {3},
mrnumber = {4355422},
zbl = {07484380},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a9/}
}
Dey, Dibakar; Majhi, Pradip. Some type of semisymmetry on two classes of almost Kenmotsu manifolds. Communications in Mathematics, Tome 29 (2021) no. 3, pp. 457-471. http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a9/
[1] Blair, D. E.: Contact Manifolds in Riemannian Geometry. 1976, Lecture Notes on Mathematics 509. Springer-Verlag, Berlin-New York, | Zbl
[2] Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds (second edition). 2010, Progress in Mathematics 203. Birkhäuser, Boston, | MR
[3] Blair, D. E., Koufogiorgos, T., Papantoniou, B. J.: Contact metric manifolds satisfying a nullity condition. Israel. J. Math., 91, 1-3, 1995, 189-214, | DOI | Zbl
[4] Dey, D., Majhi, P.: On the quasi-conformal curvature tensor of an almost Kenmotsu manifold with nullity distributions. Facta Univ. Ser. Math. Inform., 33, 2, 2018, 255-268, | MR
[5] Dileo, G., Pastore, A. M.: Almost Kenmotsu manifolds and local symmetry. Bull. Belg. Math. Soc. Simon Stevin, 14, 2, 2007, 343-354, | DOI | MR
[6] Dileo, G., Pastore, A. M.: Almost Kenmotsu manifolds and nullity distributions. J. Geom., 93, 1-2, 2009, 46-61, | DOI | MR | Zbl
[7] Ghosh, G., Majhi, P., De, U. C.: On a classification of almost Kenmotsu manifolds with generalized $(k,\mu )'$-nullity distribution. Kyungpook Math. J., 58, 1, 2018, 137-148, | MR
[8] Kenmotsu, K.: A class of almost contact Riemannian manifolds. Tohoku Math. J. (2), 24, 1972, 93-103, | Zbl
[9] Kowalczyk, D.: On some subclass of semisymmetric manifolds. Soochow J. Math., 27, 4, 2001, 445-461, | MR
[10] Pastore, A. M., Saltarelli, V.: Generalized nullity distribution on almost Kenmotsu manifolds. Int. Elec. J. Geom., 4, 2, 2011, 168-183, | MR
[11] Verheyen, P., Verstraelen, L.: A new intrinsic characterization of hypercylinders in Euclidean spaces. Kyungpook Math. J., 25, 1, 1985, 1-4,
[12] Verstraelen, L.: Comments on pseudosymmetry in the sense of Ryszard Deszcz. In: Geometry and Topology of Submanifolds, VI. River Edge. NJ: World Sci. Publishing, 6, 1994, 199-209,
[13] Wang, Y., Liu, X.: Riemannian semisymmetric almost Kenmotsu manifolds and nullity distributions. Ann. Polon. Math., 112, 1, 2014, 37-46, | DOI | MR
[14] Wang, Y., Liu, X.: On $\phi $-recurrent almost Kenmotsu manifolds. Kuwait J. Sci., 42, 1, 2015, 65-77, | MR
[15] Wang, Y., Wang, W.: Curvature properties of almost Kenmotsu manifolds with generalized nullity conditions. Filomat, 30, 14, 2016, 3807-3816, | DOI | MR