Some type of semisymmetry on two classes of almost Kenmotsu manifolds
Communications in Mathematics, Tome 29 (2021) no. 3, pp. 457-471 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The object of the present paper is to study some types of semisymmetry conditions on two classes of almost Kenmotsu manifolds. It is shown that a $(k,\mu )$-almost Kenmotsu manifold satisfying the curvature condition $Q\cdot R = 0$ is locally isometric to the hyperbolic space $\mathbb {H}^{2n+1}(-1)$. Also in $(k,\mu )$-almost Kenmotsu manifolds the following conditions: (1) local symmetry $(\nabla R = 0)$, (2) semisymmetry $(R\cdot R = 0)$, (3) $Q(S,R) = 0$, (4) $R\cdot R = Q(S,R)$, (5) locally isometric to the hyperbolic space $\mathbb {H}^{2n+1}(-1)$ are equivalent. Further, it is proved that a $(k,\mu )'$-almost Kenmotsu manifold satisfying $Q\cdot R = 0$ is locally isometric to $\mathbb {H}^{n+1}(-4) \times \mathbb {R}^n$ and a $(k,\mu )'$\HH almost Kenmotsu manifold satisfying any one of the curvature conditions $Q(S,R) = 0$ or $R\cdot R = Q(S,R)$ is either an Einstein manifold or locally isometric to $\mathbb {H}^{n+1}(-4) \times \mathbb {R}^n$. Finally, an illustrative example is presented.
The object of the present paper is to study some types of semisymmetry conditions on two classes of almost Kenmotsu manifolds. It is shown that a $(k,\mu )$-almost Kenmotsu manifold satisfying the curvature condition $Q\cdot R = 0$ is locally isometric to the hyperbolic space $\mathbb {H}^{2n+1}(-1)$. Also in $(k,\mu )$-almost Kenmotsu manifolds the following conditions: (1) local symmetry $(\nabla R = 0)$, (2) semisymmetry $(R\cdot R = 0)$, (3) $Q(S,R) = 0$, (4) $R\cdot R = Q(S,R)$, (5) locally isometric to the hyperbolic space $\mathbb {H}^{2n+1}(-1)$ are equivalent. Further, it is proved that a $(k,\mu )'$-almost Kenmotsu manifold satisfying $Q\cdot R = 0$ is locally isometric to $\mathbb {H}^{n+1}(-4) \times \mathbb {R}^n$ and a $(k,\mu )'$\HH almost Kenmotsu manifold satisfying any one of the curvature conditions $Q(S,R) = 0$ or $R\cdot R = Q(S,R)$ is either an Einstein manifold or locally isometric to $\mathbb {H}^{n+1}(-4) \times \mathbb {R}^n$. Finally, an illustrative example is presented.
Classification : 53C25, 53D15
Keywords: Almost Kenmotsu manifolds; Semisymmetry; Pseudosymmetry; Hyperbolic space.
@article{COMIM_2021_29_3_a9,
     author = {Dey, Dibakar and Majhi, Pradip},
     title = {Some type of semisymmetry on two classes of almost {Kenmotsu} manifolds},
     journal = {Communications in Mathematics},
     pages = {457--471},
     year = {2021},
     volume = {29},
     number = {3},
     mrnumber = {4355422},
     zbl = {07484380},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a9/}
}
TY  - JOUR
AU  - Dey, Dibakar
AU  - Majhi, Pradip
TI  - Some type of semisymmetry on two classes of almost Kenmotsu manifolds
JO  - Communications in Mathematics
PY  - 2021
SP  - 457
EP  - 471
VL  - 29
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a9/
LA  - en
ID  - COMIM_2021_29_3_a9
ER  - 
%0 Journal Article
%A Dey, Dibakar
%A Majhi, Pradip
%T Some type of semisymmetry on two classes of almost Kenmotsu manifolds
%J Communications in Mathematics
%D 2021
%P 457-471
%V 29
%N 3
%U http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a9/
%G en
%F COMIM_2021_29_3_a9
Dey, Dibakar; Majhi, Pradip. Some type of semisymmetry on two classes of almost Kenmotsu manifolds. Communications in Mathematics, Tome 29 (2021) no. 3, pp. 457-471. http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a9/

[1] Blair, D. E.: Contact Manifolds in Riemannian Geometry. 1976, Lecture Notes on Mathematics 509. Springer-Verlag, Berlin-New York, | Zbl

[2] Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds (second edition). 2010, Progress in Mathematics 203. Birkhäuser, Boston, | MR

[3] Blair, D. E., Koufogiorgos, T., Papantoniou, B. J.: Contact metric manifolds satisfying a nullity condition. Israel. J. Math., 91, 1-3, 1995, 189-214, | DOI | Zbl

[4] Dey, D., Majhi, P.: On the quasi-conformal curvature tensor of an almost Kenmotsu manifold with nullity distributions. Facta Univ. Ser. Math. Inform., 33, 2, 2018, 255-268, | MR

[5] Dileo, G., Pastore, A. M.: Almost Kenmotsu manifolds and local symmetry. Bull. Belg. Math. Soc. Simon Stevin, 14, 2, 2007, 343-354, | DOI | MR

[6] Dileo, G., Pastore, A. M.: Almost Kenmotsu manifolds and nullity distributions. J. Geom., 93, 1-2, 2009, 46-61, | DOI | MR | Zbl

[7] Ghosh, G., Majhi, P., De, U. C.: On a classification of almost Kenmotsu manifolds with generalized $(k,\mu )'$-nullity distribution. Kyungpook Math. J., 58, 1, 2018, 137-148, | MR

[8] Kenmotsu, K.: A class of almost contact Riemannian manifolds. Tohoku Math. J. (2), 24, 1972, 93-103, | Zbl

[9] Kowalczyk, D.: On some subclass of semisymmetric manifolds. Soochow J. Math., 27, 4, 2001, 445-461, | MR

[10] Pastore, A. M., Saltarelli, V.: Generalized nullity distribution on almost Kenmotsu manifolds. Int. Elec. J. Geom., 4, 2, 2011, 168-183, | MR

[11] Verheyen, P., Verstraelen, L.: A new intrinsic characterization of hypercylinders in Euclidean spaces. Kyungpook Math. J., 25, 1, 1985, 1-4,

[12] Verstraelen, L.: Comments on pseudosymmetry in the sense of Ryszard Deszcz. In: Geometry and Topology of Submanifolds, VI. River Edge. NJ: World Sci. Publishing, 6, 1994, 199-209,

[13] Wang, Y., Liu, X.: Riemannian semisymmetric almost Kenmotsu manifolds and nullity distributions. Ann. Polon. Math., 112, 1, 2014, 37-46, | DOI | MR

[14] Wang, Y., Liu, X.: On $\phi $-recurrent almost Kenmotsu manifolds. Kuwait J. Sci., 42, 1, 2015, 65-77, | MR

[15] Wang, Y., Wang, W.: Curvature properties of almost Kenmotsu manifolds with generalized nullity conditions. Filomat, 30, 14, 2016, 3807-3816, | DOI | MR