A Weighted Eigenvalue Problems Driven by both $p(\cdot )$-Harmonic and $p(\cdot )$-Biharmonic Operators
Communications in Mathematics, Tome 29 (2021) no. 3, pp. 443-455 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The existence of at least one non-decreasing sequence of positive eigenvalues for the problem driven by both $p(\cdot )$-Harmonic and $p(\cdot )$-biharmonic operators \begin {gather*} \Delta _{p(x)}^2 u-\Delta _{p(x)}u=\lambda w(x)|u|^{q(x)-2}u \quad \text {in } \Omega ,\\ u\in W^{2,p(\cdot )}(\Omega )\cap W_0^{1,p(\cdot )}(\Omega )\,, \end {gather*} is proved by applying a local minimization and the theory of the generalized Lebesgue-Sobolev spaces $L^{p(\cdot )}(\Omega )$ and $W^{m,p(\cdot )}(\Omega )$.
The existence of at least one non-decreasing sequence of positive eigenvalues for the problem driven by both $p(\cdot )$-Harmonic and $p(\cdot )$-biharmonic operators \begin {gather*} \Delta _{p(x)}^2 u-\Delta _{p(x)}u=\lambda w(x)|u|^{q(x)-2}u \quad \text {in } \Omega ,\\ u\in W^{2,p(\cdot )}(\Omega )\cap W_0^{1,p(\cdot )}(\Omega )\,, \end {gather*} is proved by applying a local minimization and the theory of the generalized Lebesgue-Sobolev spaces $L^{p(\cdot )}(\Omega )$ and $W^{m,p(\cdot )}(\Omega )$.
Classification : 35J35, 47J10, 58E05
Keywords: Palais-Smale condition; Ljusternick-Schnirelmann; Variational methods; $p(\cdot )$-biharmonic operator; $p(\cdot )$-harmonic operator; Variable exponent.
@article{COMIM_2021_29_3_a8,
     author = {Laghzal, Mohamed and Khalil, Abdelouahed El and Touzani, Abdelfattah},
     title = {A {Weighted} {Eigenvalue} {Problems} {Driven} by both $p(\cdot )${-Harmonic} and $p(\cdot )${-Biharmonic} {Operators}},
     journal = {Communications in Mathematics},
     pages = {443--455},
     year = {2021},
     volume = {29},
     number = {3},
     mrnumber = {4355414},
     zbl = {07484379},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a8/}
}
TY  - JOUR
AU  - Laghzal, Mohamed
AU  - Khalil, Abdelouahed El
AU  - Touzani, Abdelfattah
TI  - A Weighted Eigenvalue Problems Driven by both $p(\cdot )$-Harmonic and $p(\cdot )$-Biharmonic Operators
JO  - Communications in Mathematics
PY  - 2021
SP  - 443
EP  - 455
VL  - 29
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a8/
LA  - en
ID  - COMIM_2021_29_3_a8
ER  - 
%0 Journal Article
%A Laghzal, Mohamed
%A Khalil, Abdelouahed El
%A Touzani, Abdelfattah
%T A Weighted Eigenvalue Problems Driven by both $p(\cdot )$-Harmonic and $p(\cdot )$-Biharmonic Operators
%J Communications in Mathematics
%D 2021
%P 443-455
%V 29
%N 3
%U http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a8/
%G en
%F COMIM_2021_29_3_a8
Laghzal, Mohamed; Khalil, Abdelouahed El; Touzani, Abdelfattah. A Weighted Eigenvalue Problems Driven by both $p(\cdot )$-Harmonic and $p(\cdot )$-Biharmonic Operators. Communications in Mathematics, Tome 29 (2021) no. 3, pp. 443-455. http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a8/

[1] Bui, T.A.: $W^{1,p(\cdot )}$ estimate for renormalized solutions of quasilinear equations with measure data and Reifenberg domains. Advances in Nonlinear Analysis, 7, 4, 2018, 517-533, Walter de Gruyter Gmbh Genthiner Strasse 13, D-10785 Berlin, Germany, | DOI | MR

[2] Cencelj, M., Rădulescu, V.D., Repovš, D.D.: Double phase problems with variable growth. Nonlinear Analysis, 177, 2018, 270-287, Elsevier, | DOI | MR

[3] Diening, L., Harjulehto, P., Hästö, P., Ruzicka, M.: Lebesgue and Sobolev spaces with variable exponents. 2011, Lecture Notes in Mathematics, Springer, | MR

[4] Edmunds, D., Rákosník, J.: Sobolev embeddings with variable exponent. Studia Mathematica, 143, 3, 2000, 267-293, | DOI

[5] Khalil, A. El, Alaoui, M.D. Morchid, Touzani, A.: On the Spectrum of problems involving both $p ( x ) $-Laplacian and $P ( x ) $-Biharmonic. Advances in Science, Technology and Engineering Systems Journal, 2, 5, 2017, 134-140,

[6] Fan, X., Han, X.: Existence and multiplicity of solutions for $p(x)$-Laplacian equations in Dirichlet problem in $\mathbb {R}^{N}$. Nonlinear Analysis: Theory, Methods & Applications, 59, 1--2, 2004, 173-188, Elsevier, | MR

[7] Fan, X.L., Fan, X.: A Knobloch-type result for $p (t)$-Laplacian systems. Journal of mathematical analysis and applications, 282, 2, 2003, 453-464, Academic Press, | DOI | MR

[8] Fan, X.L., Fan, X.: A Knobloch-type result for $p (t)$-Laplacian systems. Journal of mathematical analysis and applications, 282, 2, 2003, 453-464, Academic Press, | DOI | MR

[9] Fan, X.L., Zhang, Q.H.: Existence of solutions for $p (x)$-Laplacian Dirichlet problem. Nonlinear Analysis: Theory, Methods & Applications, 52, 8, 2003, 1843-1852, Elsevier, | MR

[10] Kefi, K., Rădulescu, V.D.: On a $p(x)$-biharmonic problem with singular weights. Zeitschrift für angewandte Mathematik und Physik, 68, 80, 2017, 1-13, Springer, | MR

[11] Scapellato, A.: Regularity of solutions to elliptic equations on Herz spaces with variable exponents. Boundary Value Problems, 2019, 1, 2019, 1-9, SpringerOpen, | MR

[12] Mihăilescu, M., Rădulescu, V.: A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 462, 2073, 2006, 2625-2641, The Royal Society London, | DOI | MR

[13] Rădulescu, V.D.: Nonlinear elliptic equations with variable exponent: old and new. Nonlinear Analysis: Theory, Methods & Applications, 121, 2015, 336-369, Elsevier, | DOI | MR

[14] Rădulescu, V.D.: Isotropic and anisotropic double-phase problems: old and new. Opuscula Mathematica, 39, 2, 2019, 259-279, AGH University of Science and Technology Press, | MR

[15] Rădulescu, V.D., Repovš, D.D.: Partial differential equations with variable exponents: variational methods and qualitative analysis. 9, 2015, Monographs and Research Notes in Mathematics, CRC press, | MR

[16] Růžička, M.: Electrorheological fluids: modeling and mathematical theory. 2000, Lecture Notes in Mathematics, 1748, Springer Science & Business Media,

[17] Szulkin, A.: Ljusternik-Schnirelmann theory on $C^1$-manifolds. Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 5, 2, 1988, 119-139, Elsevier,

[18] Zang, A., Fu, Y.: Interpolation inequalities for derivatives in variable exponent Lebesgue-Sobolev spaces. Nonlinear Analysis: Theory, Methods & Applications, 69, 10, 2008, 3629-3636, Elsevier, | DOI | MR | Zbl

[19] Zeidler, E.: Nonlinear Functional Analysis and Its Applications: II/B: Nonlinear Monotone Operators. 1990, Springer, Translated from the German by the author and Leo F. Boron.

[20] Zhang, Q., Rădulescu, V.D.: Double phase anisotropic variational problems and combined effects of reaction and absorption terms. Journal de Mathématiques Pures et Appliquées, 118, 2018, 159-203, Elsevier, | DOI | MR

[21] Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory (in Russian). Izv. Akad. Nauk SSSR Ser. Mat., 50, 4, 1986, 675-710,