On the gaps between $q$-binomial coefficients
Communications in Mathematics, Tome 29 (2021) no. 3, pp. 431-442 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this note, we estimate the distance between two $q$-nomial coefficients $\bigl \lvert \binom {n}{k}_q-\binom {n'}{k'}_q\bigr \rvert $, where $(n,k)\ne (n',k')$ and $q\ge 2$ is an integer.
In this note, we estimate the distance between two $q$-nomial coefficients $\bigl \lvert \binom {n}{k}_q-\binom {n'}{k'}_q\bigr \rvert $, where $(n,k)\ne (n',k')$ and $q\ge 2$ is an integer.
Classification : 11B39, 11B65
Keywords: $q$-binomial coefficients
@article{COMIM_2021_29_3_a7,
     author = {Luca, Florian and Manganye, Sylvester},
     title = {On the gaps between $q$-binomial coefficients},
     journal = {Communications in Mathematics},
     pages = {431--442},
     year = {2021},
     volume = {29},
     number = {3},
     mrnumber = {4355413},
     zbl = {07484378},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a7/}
}
TY  - JOUR
AU  - Luca, Florian
AU  - Manganye, Sylvester
TI  - On the gaps between $q$-binomial coefficients
JO  - Communications in Mathematics
PY  - 2021
SP  - 431
EP  - 442
VL  - 29
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a7/
LA  - en
ID  - COMIM_2021_29_3_a7
ER  - 
%0 Journal Article
%A Luca, Florian
%A Manganye, Sylvester
%T On the gaps between $q$-binomial coefficients
%J Communications in Mathematics
%D 2021
%P 431-442
%V 29
%N 3
%U http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a7/
%G en
%F COMIM_2021_29_3_a7
Luca, Florian; Manganye, Sylvester. On the gaps between $q$-binomial coefficients. Communications in Mathematics, Tome 29 (2021) no. 3, pp. 431-442. http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a7/

[1] Luca, F., Marques, D., Stănică , P.: On the spacings between $C$-nomial coefficients. J. Number Theory, 130, 2010, 82-100, | DOI | MR

[2] Rosser, J. B., Schoenfeld, L.: Approximate formulas for some functions of prime numbers. Illinois J. Math., 6, 1962, 64-94, | DOI