On the variation of certain fractional part sequences
Communications in Mathematics, Tome 29 (2021) no. 3, pp. 407-430
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $b>a>0$. We prove the following asymptotic formula $$ \sum _{n\geqslant 0} \big \lvert \{x/(n+a)\}-\{x/(n+b)\}\big \rvert =\frac {2}{\pi }\zeta (3/2)\sqrt {cx}+O(c^{2/9}x^{4/9})\,, $$ with $c=b-a$, uniformly for $x \geqslant 40 c^{-5}(1+b)^{27/2}$.
Let $b>a>0$. We prove the following asymptotic formula $$ \sum _{n\geqslant 0} \big \lvert \{x/(n+a)\}-\{x/(n+b)\}\big \rvert =\frac {2}{\pi }\zeta (3/2)\sqrt {cx}+O(c^{2/9}x^{4/9})\,, $$ with $c=b-a$, uniformly for $x \geqslant 40 c^{-5}(1+b)^{27/2}$.
Classification :
11N37
Keywords: Fractional part; Elementary methods; van der Corput estimates
Keywords: Fractional part; Elementary methods; van der Corput estimates
@article{COMIM_2021_29_3_a6,
author = {Balazard, Michel and Benferhat, Leila and Bouderbala, Mihoub},
title = {On the variation of certain fractional part sequences},
journal = {Communications in Mathematics},
pages = {407--430},
year = {2021},
volume = {29},
number = {3},
mrnumber = {4355415},
zbl = {07484377},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a6/}
}
TY - JOUR AU - Balazard, Michel AU - Benferhat, Leila AU - Bouderbala, Mihoub TI - On the variation of certain fractional part sequences JO - Communications in Mathematics PY - 2021 SP - 407 EP - 430 VL - 29 IS - 3 UR - http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a6/ LA - en ID - COMIM_2021_29_3_a6 ER -
Balazard, Michel; Benferhat, Leila; Bouderbala, Mihoub. On the variation of certain fractional part sequences. Communications in Mathematics, Tome 29 (2021) no. 3, pp. 407-430. http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a6/
[1] Balazard, M.: Sur la variation totale de la suite des parties fractionnaires des quotients d'un nombre réel positif par les nombres entiers naturels consécutifs. Mosc. J. Comb. Number Theory, 7, 2017, 3-23, | MR
[2] Corput, J.G. van der: Méthodes d'approximation dans le calcul du nombre des points ŕ coordonnées entičres. Enseign. Math., 23, 1923, 5-29,
[3] Corput, J.G. van der: Neue zahlentheoretische Abschätzungen. Math. Ann., 89, 1923, 215-254, | DOI
[4] Corput, J.G. van der: Zahlentheoretische Abschätzungen mit Anwendung auf Gitterpunktprobleme. Math. Z., 17, 1923, 250-259, | DOI
[5] Wintner, A.: Square root estimates of arithmetical sum functions. Duke Math. J., 13, 1946, 185-193, | DOI