On the variation of certain fractional part sequences
Communications in Mathematics, Tome 29 (2021) no. 3, pp. 407-430 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $b>a>0$. We prove the following asymptotic formula $$ \sum _{n\geqslant 0} \big \lvert \{x/(n+a)\}-\{x/(n+b)\}\big \rvert =\frac {2}{\pi }\zeta (3/2)\sqrt {cx}+O(c^{2/9}x^{4/9})\,, $$ with $c=b-a$, uniformly for $x \geqslant 40 c^{-5}(1+b)^{27/2}$.
Let $b>a>0$. We prove the following asymptotic formula $$ \sum _{n\geqslant 0} \big \lvert \{x/(n+a)\}-\{x/(n+b)\}\big \rvert =\frac {2}{\pi }\zeta (3/2)\sqrt {cx}+O(c^{2/9}x^{4/9})\,, $$ with $c=b-a$, uniformly for $x \geqslant 40 c^{-5}(1+b)^{27/2}$.
Classification : 11N37
Keywords: Fractional part; Elementary methods; van der Corput estimates
@article{COMIM_2021_29_3_a6,
     author = {Balazard, Michel and Benferhat, Leila and Bouderbala, Mihoub},
     title = {On the variation of certain fractional part sequences},
     journal = {Communications in Mathematics},
     pages = {407--430},
     year = {2021},
     volume = {29},
     number = {3},
     mrnumber = {4355415},
     zbl = {07484377},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a6/}
}
TY  - JOUR
AU  - Balazard, Michel
AU  - Benferhat, Leila
AU  - Bouderbala, Mihoub
TI  - On the variation of certain fractional part sequences
JO  - Communications in Mathematics
PY  - 2021
SP  - 407
EP  - 430
VL  - 29
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a6/
LA  - en
ID  - COMIM_2021_29_3_a6
ER  - 
%0 Journal Article
%A Balazard, Michel
%A Benferhat, Leila
%A Bouderbala, Mihoub
%T On the variation of certain fractional part sequences
%J Communications in Mathematics
%D 2021
%P 407-430
%V 29
%N 3
%U http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a6/
%G en
%F COMIM_2021_29_3_a6
Balazard, Michel; Benferhat, Leila; Bouderbala, Mihoub. On the variation of certain fractional part sequences. Communications in Mathematics, Tome 29 (2021) no. 3, pp. 407-430. http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a6/

[1] Balazard, M.: Sur la variation totale de la suite des parties fractionnaires des quotients d'un nombre réel positif par les nombres entiers naturels consécutifs. Mosc. J. Comb. Number Theory, 7, 2017, 3-23, | MR

[2] Corput, J.G. van der: Méthodes d'approximation dans le calcul du nombre des points ŕ coordonnées entičres. Enseign. Math., 23, 1923, 5-29,

[3] Corput, J.G. van der: Neue zahlentheoretische Abschätzungen. Math. Ann., 89, 1923, 215-254, | DOI

[4] Corput, J.G. van der: Zahlentheoretische Abschätzungen mit Anwendung auf Gitterpunktprobleme. Math. Z., 17, 1923, 250-259, | DOI

[5] Wintner, A.: Square root estimates of arithmetical sum functions. Duke Math. J., 13, 1946, 185-193, | DOI