Keywords: G-doubly stochastic matrix; gt-majorization; (strong) linear preserver; tridiagonal matrices.
@article{COMIM_2021_29_3_a5,
author = {Mohammadhasani, Ahmad and Sayyari, Yamin and Sabzvari, Mahdi},
title = {G-tridiagonal majorization on $\textbf {M}_{n,m}$},
journal = {Communications in Mathematics},
pages = {395--405},
year = {2021},
volume = {29},
number = {3},
mrnumber = {4355421},
zbl = {07484376},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a5/}
}
TY - JOUR
AU - Mohammadhasani, Ahmad
AU - Sayyari, Yamin
AU - Sabzvari, Mahdi
TI - G-tridiagonal majorization on $\textbf {M}_{n,m}$
JO - Communications in Mathematics
PY - 2021
SP - 395
EP - 405
VL - 29
IS - 3
UR - http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a5/
LA - en
ID - COMIM_2021_29_3_a5
ER -
Mohammadhasani, Ahmad; Sayyari, Yamin; Sabzvari, Mahdi. G-tridiagonal majorization on $\textbf {M}_{n,m}$. Communications in Mathematics, Tome 29 (2021) no. 3, pp. 395-405. http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a5/
[1] Armandnejad, A., Gashool, Z.: Strong linear preservers of g-tridiagonal majorization on $\mathbb R^n$. Electronic Journal of Linear Algebra, 123, 2012, 115-121, | MR
[2] Armandnejad, A., Mohtashami, S., Jamshidi, M.: On linear preservers of g-tridiagonal majorization on $\mathbb {R}^{n}$. Linear Algebra and its Applications, 459, 2014, 145-153, | DOI | MR
[3] Beasley, L.B., Lee, S.-G., Lee, Y.-H.: A characterization of strong preservers of matrix majorization. Linear Algebra and its Applications, 367, 2003, 341-346, | DOI | MR
[4] Bahatia, R.: Matrix Analysis. 1997, Springer-Verlag, New York,
[5] Brualdi, R.A., Dahl, G.: An extension of the polytope of doubly stochastic matrices. Linear and Multilinear Algebra, 6, 3, 2013, 393-408, | DOI | MR
[6] Chiang, H., Li, C.K.: Generalized doubly stochastic matrices and linear preservers. Linear and Multilinear Algebra, 53, 2005, 1-11, | DOI | MR
[7] Hasani, A.M., Radjabalipour, M.: The structure of linear operators strongly preserving majorizations of matrices. Electronic Journal of Linear Algebra, 15, 2006, 260-268, | DOI | MR
[8] Hasani, A.M., Radjabalipour, M.: On linear preservers of (right) matrix majorization. Linear Algebra and its Applications, 423, 2007, 255-261, | DOI | MR
[9] Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: Theory of majorization and its applications. 2011, Springer, New York, | MR