G-tridiagonal majorization on $\textbf {M}_{n,m}$
Communications in Mathematics, Tome 29 (2021) no. 3, pp. 395-405 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For $X,Y\in \textbf {M}_{n,m}$, it is said that $X$ is \emph {g-tridiagonal} majorized by $Y$ (and it is denoted by $X\prec _{gt}Y$) if there exists a tridiagonal g-doubly stochastic matrix $A$ such that $X=AY$. In this paper, the linear preservers and strong linear preservers of $\prec _{gt}$ are characterized on $\textbf {M}_{n,m}$.
For $X,Y\in \textbf {M}_{n,m}$, it is said that $X$ is \emph {g-tridiagonal} majorized by $Y$ (and it is denoted by $X\prec _{gt}Y$) if there exists a tridiagonal g-doubly stochastic matrix $A$ such that $X=AY$. In this paper, the linear preservers and strong linear preservers of $\prec _{gt}$ are characterized on $\textbf {M}_{n,m}$.
Classification : 15A04, 15A21
Keywords: G-doubly stochastic matrix; gt-majorization; (strong) linear preserver; tridiagonal matrices.
@article{COMIM_2021_29_3_a5,
     author = {Mohammadhasani, Ahmad and Sayyari, Yamin and Sabzvari, Mahdi},
     title = {G-tridiagonal majorization on $\textbf  {M}_{n,m}$},
     journal = {Communications in Mathematics},
     pages = {395--405},
     year = {2021},
     volume = {29},
     number = {3},
     mrnumber = {4355421},
     zbl = {07484376},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a5/}
}
TY  - JOUR
AU  - Mohammadhasani, Ahmad
AU  - Sayyari, Yamin
AU  - Sabzvari, Mahdi
TI  - G-tridiagonal majorization on $\textbf  {M}_{n,m}$
JO  - Communications in Mathematics
PY  - 2021
SP  - 395
EP  - 405
VL  - 29
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a5/
LA  - en
ID  - COMIM_2021_29_3_a5
ER  - 
%0 Journal Article
%A Mohammadhasani, Ahmad
%A Sayyari, Yamin
%A Sabzvari, Mahdi
%T G-tridiagonal majorization on $\textbf  {M}_{n,m}$
%J Communications in Mathematics
%D 2021
%P 395-405
%V 29
%N 3
%U http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a5/
%G en
%F COMIM_2021_29_3_a5
Mohammadhasani, Ahmad; Sayyari, Yamin; Sabzvari, Mahdi. G-tridiagonal majorization on $\textbf  {M}_{n,m}$. Communications in Mathematics, Tome 29 (2021) no. 3, pp. 395-405. http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a5/

[1] Armandnejad, A., Gashool, Z.: Strong linear preservers of g-tridiagonal majorization on $\mathbb R^n$. Electronic Journal of Linear Algebra, 123, 2012, 115-121, | MR

[2] Armandnejad, A., Mohtashami, S., Jamshidi, M.: On linear preservers of g-tridiagonal majorization on $\mathbb {R}^{n}$. Linear Algebra and its Applications, 459, 2014, 145-153, | DOI | MR

[3] Beasley, L.B., Lee, S.-G., Lee, Y.-H.: A characterization of strong preservers of matrix majorization. Linear Algebra and its Applications, 367, 2003, 341-346, | DOI | MR

[4] Bahatia, R.: Matrix Analysis. 1997, Springer-Verlag, New York,

[5] Brualdi, R.A., Dahl, G.: An extension of the polytope of doubly stochastic matrices. Linear and Multilinear Algebra, 6, 3, 2013, 393-408, | DOI | MR

[6] Chiang, H., Li, C.K.: Generalized doubly stochastic matrices and linear preservers. Linear and Multilinear Algebra, 53, 2005, 1-11, | DOI | MR

[7] Hasani, A.M., Radjabalipour, M.: The structure of linear operators strongly preserving majorizations of matrices. Electronic Journal of Linear Algebra, 15, 2006, 260-268, | DOI | MR

[8] Hasani, A.M., Radjabalipour, M.: On linear preservers of (right) matrix majorization. Linear Algebra and its Applications, 423, 2007, 255-261, | DOI | MR

[9] Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: Theory of majorization and its applications. 2011, Springer, New York, | MR