A note on the volume of $\nabla $-Einstein manifolds with skew-torsion
Communications in Mathematics, Tome 29 (2021) no. 3, pp. 385-393 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study the volume of compact Riemannian manifolds which are Einstein with respect to a metric connection with (parallel) skew\--tor\-sion. We provide a result for the sign of the first variation of the volume in terms of the corresponding scalar curvature. This generalizes a result of M.~Ville \cite {Vil} related with the first variation of the volume on a compact Einstein manifold.
We study the volume of compact Riemannian manifolds which are Einstein with respect to a metric connection with (parallel) skew\--tor\-sion. We provide a result for the sign of the first variation of the volume in terms of the corresponding scalar curvature. This generalizes a result of M.~Ville \cite {Vil} related with the first variation of the volume on a compact Einstein manifold.
Classification : 53B05, 53C05, 53C25
Keywords: connections with totally skew-symmetric torsion; scalar curvature; $\nabla $-Einstein manifolds; parallel skew-torsion.
@article{COMIM_2021_29_3_a4,
     author = {Chrysikos, Ioannis},
     title = {A note on the volume of $\nabla ${-Einstein} manifolds with skew-torsion},
     journal = {Communications in Mathematics},
     pages = {385--393},
     year = {2021},
     volume = {29},
     number = {3},
     mrnumber = {4355412},
     zbl = {07484375},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a4/}
}
TY  - JOUR
AU  - Chrysikos, Ioannis
TI  - A note on the volume of $\nabla $-Einstein manifolds with skew-torsion
JO  - Communications in Mathematics
PY  - 2021
SP  - 385
EP  - 393
VL  - 29
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a4/
LA  - en
ID  - COMIM_2021_29_3_a4
ER  - 
%0 Journal Article
%A Chrysikos, Ioannis
%T A note on the volume of $\nabla $-Einstein manifolds with skew-torsion
%J Communications in Mathematics
%D 2021
%P 385-393
%V 29
%N 3
%U http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a4/
%G en
%F COMIM_2021_29_3_a4
Chrysikos, Ioannis. A note on the volume of $\nabla $-Einstein manifolds with skew-torsion. Communications in Mathematics, Tome 29 (2021) no. 3, pp. 385-393. http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a4/

[1] Agricola, I., Ferreira, A.C.: Einstein manifolds with skew torsion. Oxford Quart. J., 65, 2014, 717-741, | DOI | MR

[2] Agricola, I., Friedrich, Th.: On the holonomy of connections with skew-symmetric torsion. Math. Ann., 328, 2004, 711-748, | DOI | MR | Zbl

[3] Agricola, I., Becker-Bender, J., Kim, H.: Twistorial eigenvalue estimates for generalized Dirac operators with torsion. Adv. Math., 243, 2013, 296-329, | DOI | MR

[4] Ammann, B., Bär, C.: The Einstein-Hilbert action as a spectral action. Noncommutative Geometry and the Standard Model of Elementary Particle Physics, 2002, 75-108, | MR

[5] Besse, A.L.: Einstein manifolds. 1987, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, | Zbl

[6] Chrysikos, I.: Invariant connections with skew-torsion and $\nabla $-Einstein manifolds. J. Lie Theory, 26, 2016, 11-48, | MR

[7] Chrysikos, I.: Killing and twistor spinors with torsion. Ann. Glob. Anal. Geom., 49, 2016, 105-141, | DOI | MR

[8] Chrysikos, I.: A new $\frac{1}{2}$-Ricci type formula on the spinor bundle and applications. Adv. Appl. Clifford Algebras, 27, 2017, 3097-3127, | DOI | MR

[9] Chrysikos, I., Gustad, C. O'Cadiz, Winther, H.: Invariant connections and $\nabla $-Einstein structures on isotropy irreducible spaces. J. Geom. Phys., 138, 2019, 257-284, | DOI | MR

[10] Draper, C.A., Garvin, A., Palomo, F.J.: Invariant affine connections on odd dimensional spheres. Ann. Glob. Anal. Geom., 49, 2016, 213-251, | DOI | MR

[11] Draper, C.A., Garvin, A., Palomo, F.J.: Einstein connections with skew-torsion on Berger spheres. J. Geom. Phys., 134, 2017, 133-141, | DOI | MR

[12] Friedrich, Th., Ivanov, S.: Parallel spinors and connections with skew-symmetric torsion in string theory. Asian J. Math., 6, 1962, 64-94,

[13] Friedrich, Th., Kim, E.C.: The Einstein-Dirac equation on Riemannian spin manifolds. J. Geom. Phys., 33, 2000, 128-172, | DOI

[14] Kühnel, W.: Differential Geometry, Curves--Surfaces--Manifolds. 2002, Amer. Math. Soc. Student Math. Library, | MR

[15] Ville, M.: Sur le volume des variétés riemanniennes pincées. Bulletin de la S. M. F., 115, 1987, 127-139,