Keywords: connections with totally skew-symmetric torsion; scalar curvature; $\nabla $-Einstein manifolds; parallel skew-torsion.
@article{COMIM_2021_29_3_a4,
author = {Chrysikos, Ioannis},
title = {A note on the volume of $\nabla ${-Einstein} manifolds with skew-torsion},
journal = {Communications in Mathematics},
pages = {385--393},
year = {2021},
volume = {29},
number = {3},
mrnumber = {4355412},
zbl = {07484375},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a4/}
}
Chrysikos, Ioannis. A note on the volume of $\nabla $-Einstein manifolds with skew-torsion. Communications in Mathematics, Tome 29 (2021) no. 3, pp. 385-393. http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a4/
[1] Agricola, I., Ferreira, A.C.: Einstein manifolds with skew torsion. Oxford Quart. J., 65, 2014, 717-741, | DOI | MR
[2] Agricola, I., Friedrich, Th.: On the holonomy of connections with skew-symmetric torsion. Math. Ann., 328, 2004, 711-748, | DOI | MR | Zbl
[3] Agricola, I., Becker-Bender, J., Kim, H.: Twistorial eigenvalue estimates for generalized Dirac operators with torsion. Adv. Math., 243, 2013, 296-329, | DOI | MR
[4] Ammann, B., Bär, C.: The Einstein-Hilbert action as a spectral action. Noncommutative Geometry and the Standard Model of Elementary Particle Physics, 2002, 75-108, | MR
[5] Besse, A.L.: Einstein manifolds. 1987, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, | Zbl
[6] Chrysikos, I.: Invariant connections with skew-torsion and $\nabla $-Einstein manifolds. J. Lie Theory, 26, 2016, 11-48, | MR
[7] Chrysikos, I.: Killing and twistor spinors with torsion. Ann. Glob. Anal. Geom., 49, 2016, 105-141, | DOI | MR
[8] Chrysikos, I.: A new $\frac{1}{2}$-Ricci type formula on the spinor bundle and applications. Adv. Appl. Clifford Algebras, 27, 2017, 3097-3127, | DOI | MR
[9] Chrysikos, I., Gustad, C. O'Cadiz, Winther, H.: Invariant connections and $\nabla $-Einstein structures on isotropy irreducible spaces. J. Geom. Phys., 138, 2019, 257-284, | DOI | MR
[10] Draper, C.A., Garvin, A., Palomo, F.J.: Invariant affine connections on odd dimensional spheres. Ann. Glob. Anal. Geom., 49, 2016, 213-251, | DOI | MR
[11] Draper, C.A., Garvin, A., Palomo, F.J.: Einstein connections with skew-torsion on Berger spheres. J. Geom. Phys., 134, 2017, 133-141, | DOI | MR
[12] Friedrich, Th., Ivanov, S.: Parallel spinors and connections with skew-symmetric torsion in string theory. Asian J. Math., 6, 1962, 64-94,
[13] Friedrich, Th., Kim, E.C.: The Einstein-Dirac equation on Riemannian spin manifolds. J. Geom. Phys., 33, 2000, 128-172, | DOI
[14] Kühnel, W.: Differential Geometry, Curves--Surfaces--Manifolds. 2002, Amer. Math. Soc. Student Math. Library, | MR
[15] Ville, M.: Sur le volume des variétés riemanniennes pincées. Bulletin de la S. M. F., 115, 1987, 127-139,