$(\phi , \varphi )$-derivations on semiprime rings and Banach algebras
Communications in Mathematics, Tome 29 (2021) no. 3, pp. 371-383 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\mathcal{R} $ be a semiprime ring with unity $e$ and $\phi $, $\varphi $ be automorphisms of $\mathcal{R} $. In this paper it is shown that if $\mathcal{R} $ satisfies $$2\mathcal{D} (x^n) = \mathcal{D} (x^{n-1})\phi (x) + \varphi (x^{n-1})\mathcal{D} (x)+\mathcal{D} (x)\phi (x^{n-1}) + \varphi (x)\mathcal{D} (x^{n-1})$$ for all $x\in \mathcal{R} $ and some fixed integer $n\geq 2$, then $\mathcal{D} $ is an ($\phi $, $\varphi $)-derivation. Moreover, this result makes it possible to prove that if $\mathcal { R}$ admits an additive mappings $\mathcal{D} ,\mathcal{G} \colon \mathcal{R} \rightarrow \mathcal{R} $ satisfying the relations \begin {gather*}\nonumber 2\mathcal{D} (x^n) = \mathcal{D} (x^{n-1})\phi (x) + \varphi (x^{n-1})\mathcal{G} (x)+\mathcal{G} (x)\phi (x^{n-1}) + \varphi (x)\mathcal{G} (x^{n-1})\,, \\ 2\mathcal{G} (x^n) = \mathcal{G} (x^{n-1})\phi (x) + \varphi (x^{n-1})\mathcal{D} (x)+\mathcal{D} (x)\phi (x^{n-1}) + \varphi (x)\mathcal{D} (x^{n-1})\,, \end {gather*} for all $x\in \mathcal{R} $ and some fixed integer $n\geq 2$, then $\mathcal{D} $ and $\mathcal{G} $ are ($\phi $, $\varphi $)\HH derivations under some torsion restriction. Finally, we apply these purely ring theoretic results to semi-simple Banach algebras.
Let $\mathcal{R} $ be a semiprime ring with unity $e$ and $\phi $, $\varphi $ be automorphisms of $\mathcal{R} $. In this paper it is shown that if $\mathcal{R} $ satisfies $$2\mathcal{D} (x^n) = \mathcal{D} (x^{n-1})\phi (x) + \varphi (x^{n-1})\mathcal{D} (x)+\mathcal{D} (x)\phi (x^{n-1}) + \varphi (x)\mathcal{D} (x^{n-1})$$ for all $x\in \mathcal{R} $ and some fixed integer $n\geq 2$, then $\mathcal{D} $ is an ($\phi $, $\varphi $)-derivation. Moreover, this result makes it possible to prove that if $\mathcal { R}$ admits an additive mappings $\mathcal{D} ,\mathcal{G} \colon \mathcal{R} \rightarrow \mathcal{R} $ satisfying the relations \begin {gather*}\nonumber 2\mathcal{D} (x^n) = \mathcal{D} (x^{n-1})\phi (x) + \varphi (x^{n-1})\mathcal{G} (x)+\mathcal{G} (x)\phi (x^{n-1}) + \varphi (x)\mathcal{G} (x^{n-1})\,, \\ 2\mathcal{G} (x^n) = \mathcal{G} (x^{n-1})\phi (x) + \varphi (x^{n-1})\mathcal{D} (x)+\mathcal{D} (x)\phi (x^{n-1}) + \varphi (x)\mathcal{D} (x^{n-1})\,, \end {gather*} for all $x\in \mathcal{R} $ and some fixed integer $n\geq 2$, then $\mathcal{D} $ and $\mathcal{G} $ are ($\phi $, $\varphi $)\HH derivations under some torsion restriction. Finally, we apply these purely ring theoretic results to semi-simple Banach algebras.
Classification : 16N60, 16W25, 46J10
Keywords: Prime ring; semiprime ring; Banach algebra; Jordan derivation; $(\phi, \varphi )$-derivation
@article{COMIM_2021_29_3_a3,
     author = {Wani, Bilal Ahmad},
     title = {$(\phi , \varphi )$-derivations on semiprime rings and {Banach} algebras},
     journal = {Communications in Mathematics},
     pages = {371--383},
     year = {2021},
     volume = {29},
     number = {3},
     mrnumber = {4355419},
     zbl = {07484374},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a3/}
}
TY  - JOUR
AU  - Wani, Bilal Ahmad
TI  - $(\phi , \varphi )$-derivations on semiprime rings and Banach algebras
JO  - Communications in Mathematics
PY  - 2021
SP  - 371
EP  - 383
VL  - 29
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a3/
LA  - en
ID  - COMIM_2021_29_3_a3
ER  - 
%0 Journal Article
%A Wani, Bilal Ahmad
%T $(\phi , \varphi )$-derivations on semiprime rings and Banach algebras
%J Communications in Mathematics
%D 2021
%P 371-383
%V 29
%N 3
%U http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a3/
%G en
%F COMIM_2021_29_3_a3
Wani, Bilal Ahmad. $(\phi , \varphi )$-derivations on semiprime rings and Banach algebras. Communications in Mathematics, Tome 29 (2021) no. 3, pp. 371-383. http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a3/

[1] Ashraf, M., Rehman, N., Ali, S.: On Lie ideals and Jordan generalized derivations of prime rings. Indian Journal of Pure & Applied Mathematics, 34, 2, 2003, 291-294, King Abdulaziz University, | MR

[2] Ashraf, M., Rehman, N.: On Jordan ideals and Jordan derivations of a prime rings. Demonstratio Mathematica, 37, 2, 2004, 275-284, | DOI | MR

[3] Bonsall, F.F., Duncan, J.: Complete Normed Algebras. 1973, Springer-Verlag, New York, | Zbl

[4] Brešar, M.: Jordan derivations on semiprime rings. Proceedings of the American Mathematical Society, 104, 4, 1988, 1003-1006, | DOI

[5] Brešar, M.: Jordan mappings of semiprime rings. Journal of Algebra, 127, 1, 1989, 218-228, Elsevier, | DOI

[6] Brešar, M., Vukman, J.: Jordan derivations on prime rings. Bulletin of the Australian Mathematical Society, 37, 3, 1988, 321-322, Cambridge University Press, | DOI

[7] Brešar, M., Vukman, J.: Jordan ($\theta $, $\phi $)-derivations. Glasnik Matematicki, 16, 1991, 13-17,

[8] Cusack, J.M.: Jordan derivations on rings. Proceedings of the American Mathematical Society, 53, 2, 1975, 321-324, | DOI

[9] Fošner, A., Vukman, J.: On certain functional equations related to Jordan triple $(\theta ,\phi )$-derivations on semiprime rings. Monatshefte für Mathematik, 162, 2, 2011, 157-165, Springer, | DOI | MR

[10] Herstein, I.N.: Jordan derivations of prime rings. Proceedings of the American Mathematical Society, 8, 6, 1957, 1104-1110, JSTOR,

[11] Liu, C. K., Shiue, W. K.: Generalized Jordan triple $(\theta ,\phi )$-derivations on semiprime rings. Taiwanese Journal of Mathematics, 11, 5, 2007, 1397-1406, The Mathematical Society of the Republic of China, | MR

[12] Rehman, N., Širovnik, N., Bano, T.: On certain functional equations on standard operator algebras. Mediterranean Journal of Mathematics, 14, 1, 2017, 1-10, Springer, | DOI | MR

[13] Rehman, N., Bano, T.: A result on functional equations in semiprime rings and standard operator algebras. Acta Mathematica Universitatis Comenianae, 85, 1, 2016, 21-28, | MR

[14] Širovnik, N.: On certain functional equation in semiprime rings and standard operator algebras. Cubo (Temuco), 16, 1, 2014, 73-80, Universidad de La Frontera. Departamento de Matemática y Estadística., | MR

[15] Širovnik, N., Vukman, J.: On certain functional equation in semiprime rings. Algebra Colloquium, 23, 1, 2016, 65-70, World Scientific, | MR

[16] Širovnik, N.: On functional equations related to derivations in semiprime rings and standard operator algebras. Glasnik Matematički, 47, 1, 2012, 95-104, Hrvatsko matematičko društvo i PMF-Matematički odjel, Sveučilišta u Zagrebu,

[17] Vukman, J.: Some remarks on derivations in semiprime rings and standard operator algebras. Glasnik Matematički, 46, 1, 2011, 43-48, Hrvatsko matematičko društvo i PMF-Matematički odjel, Sveučilišta u Zagrebu,

[18] Vukman, J.: Identities with derivations and automorphisms on semiprime rings. International Journal of Mathematics and Mathematical Sciences, 2005, 7, 2005, 1031-1038, Hindawi, | DOI | MR

[19] Vukman, J.: Identities related to derivations and centralizers on standard operator algebras. Taiwanese Journal of Mathematics, 11, 1, 2007, 255-265, The Mathematical Society of the Republic of China, | DOI | MR

[20] Vukman, J., Kosi-Ulbl, I.: A note on derivations in semiprime rings. International Journal of Mathematics and Mathematical Sciences, 2005, 20, 2005, 3347-3350, Hindawi, | DOI | MR