A non-linear discrete-time dynamical system related to epidemic SISI model
Communications in Mathematics, Tome 29 (2021) no. 3, pp. 505-525 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider SISI epidemic model with discrete-time. The crucial point of this model is that an individual can be infected twice. This non-linear evolution operator depends on seven parameters and we assume that the population size under consideration is constant, so death rate is the same with birth rate per unit time. Reducing to quadratic stochastic operator (QSO) we study the dynamical system of the SISI model.
We consider SISI epidemic model with discrete-time. The crucial point of this model is that an individual can be infected twice. This non-linear evolution operator depends on seven parameters and we assume that the population size under consideration is constant, so death rate is the same with birth rate per unit time. Reducing to quadratic stochastic operator (QSO) we study the dynamical system of the SISI model.
Classification : 37C15, 37C25, 37N25
Keywords: Quadratic stochastic operator; fixed point; discrete-time; SISI model; epidemic
@article{COMIM_2021_29_3_a13,
     author = {Shoyimardonov, Sobirjon K.},
     title = {A non-linear discrete-time dynamical system related to epidemic {SISI} model},
     journal = {Communications in Mathematics},
     pages = {505--525},
     year = {2021},
     volume = {29},
     number = {3},
     mrnumber = {4355425},
     zbl = {07484384},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a13/}
}
TY  - JOUR
AU  - Shoyimardonov, Sobirjon K.
TI  - A non-linear discrete-time dynamical system related to epidemic SISI model
JO  - Communications in Mathematics
PY  - 2021
SP  - 505
EP  - 525
VL  - 29
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a13/
LA  - en
ID  - COMIM_2021_29_3_a13
ER  - 
%0 Journal Article
%A Shoyimardonov, Sobirjon K.
%T A non-linear discrete-time dynamical system related to epidemic SISI model
%J Communications in Mathematics
%D 2021
%P 505-525
%V 29
%N 3
%U http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a13/
%G en
%F COMIM_2021_29_3_a13
Shoyimardonov, Sobirjon K. A non-linear discrete-time dynamical system related to epidemic SISI model. Communications in Mathematics, Tome 29 (2021) no. 3, pp. 505-525. http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a13/

[1] Devaney, R.L.: An Introduction to Chaotic Dynamical System. 2003, Westview Press, | MR

[2] Ganikhodzhaev, R.N., Mukhamedov, F.M., Rozikov, U.A.: Quadratic stochastic operators and processes: results and open problems. Inf. Dim. Anal. Quant. Prob. Rel. Fields, 14, 2, 2011, 279-335, | DOI | MR

[3] Greenhalgh, D., Diekmann, O., Jong, M. de: Subcritical endemic steady states in mathematical models for animal infections with incomplete immunity. Math.Biosc., 165, 1, 2000, 25 pp, | DOI

[4] Lyubich, Y.I.: Mathematical structures in population genetics. 1992, Springer-Verlag, Berlin,

[5] Müller, J., Kuttler, Ch.: Methods and models in mathematical biology. 2015, Springer, | MR

[6] Rozikov, U.A., Shoyimardonov, S.K.: Leslie's prey-predator model in discrete time. Inter. Jour. Biomath, 13, 6, 2020, 2050053, | MR

[7] Rozikov, U.A., Shoyimardonov, S.K.: Ocean ecosystem discrete time dynamics generated by l-Volterra operators. Inter. Jour. Biomath., 12, 2, 2019, 24 pp, | MR

[8] Rozikov, U.A., Shoyimardonov, S.K., R.Varro: Planktons discrete-time dynamical systems. Nonlinear Studies, 28, 2, 2021, | MR