Keywords: Quadratic stochastic operator; fixed point; discrete-time; SISI model; epidemic
@article{COMIM_2021_29_3_a13,
author = {Shoyimardonov, Sobirjon K.},
title = {A non-linear discrete-time dynamical system related to epidemic {SISI} model},
journal = {Communications in Mathematics},
pages = {505--525},
year = {2021},
volume = {29},
number = {3},
mrnumber = {4355425},
zbl = {07484384},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a13/}
}
Shoyimardonov, Sobirjon K. A non-linear discrete-time dynamical system related to epidemic SISI model. Communications in Mathematics, Tome 29 (2021) no. 3, pp. 505-525. http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a13/
[1] Devaney, R.L.: An Introduction to Chaotic Dynamical System. 2003, Westview Press, | MR
[2] Ganikhodzhaev, R.N., Mukhamedov, F.M., Rozikov, U.A.: Quadratic stochastic operators and processes: results and open problems. Inf. Dim. Anal. Quant. Prob. Rel. Fields, 14, 2, 2011, 279-335, | DOI | MR
[3] Greenhalgh, D., Diekmann, O., Jong, M. de: Subcritical endemic steady states in mathematical models for animal infections with incomplete immunity. Math.Biosc., 165, 1, 2000, 25 pp, | DOI
[4] Lyubich, Y.I.: Mathematical structures in population genetics. 1992, Springer-Verlag, Berlin,
[5] Müller, J., Kuttler, Ch.: Methods and models in mathematical biology. 2015, Springer, | MR
[6] Rozikov, U.A., Shoyimardonov, S.K.: Leslie's prey-predator model in discrete time. Inter. Jour. Biomath, 13, 6, 2020, 2050053, | MR
[7] Rozikov, U.A., Shoyimardonov, S.K.: Ocean ecosystem discrete time dynamics generated by l-Volterra operators. Inter. Jour. Biomath., 12, 2, 2019, 24 pp, | MR
[8] Rozikov, U.A., Shoyimardonov, S.K., R.Varro: Planktons discrete-time dynamical systems. Nonlinear Studies, 28, 2, 2021, | MR