Keywords: Integral transform; Bessel function; Whittaker function; Confluent hypergeometric function; Lorentz-Gaussian beams.
@article{COMIM_2021_29_3_a11,
author = {Belafhal, A. and Halba, E.M. El and Usman, T.},
title = {An integral transform and its application in the propagation of {Lorentz-Gaussian} beams},
journal = {Communications in Mathematics},
pages = {483--491},
year = {2021},
volume = {29},
number = {3},
mrnumber = {4355423},
zbl = {07484382},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a11/}
}
TY - JOUR AU - Belafhal, A. AU - Halba, E.M. El AU - Usman, T. TI - An integral transform and its application in the propagation of Lorentz-Gaussian beams JO - Communications in Mathematics PY - 2021 SP - 483 EP - 491 VL - 29 IS - 3 UR - http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a11/ LA - en ID - COMIM_2021_29_3_a11 ER -
%0 Journal Article %A Belafhal, A. %A Halba, E.M. El %A Usman, T. %T An integral transform and its application in the propagation of Lorentz-Gaussian beams %J Communications in Mathematics %D 2021 %P 483-491 %V 29 %N 3 %U http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a11/ %G en %F COMIM_2021_29_3_a11
Belafhal, A.; Halba, E.M. El; Usman, T. An integral transform and its application in the propagation of Lorentz-Gaussian beams. Communications in Mathematics, Tome 29 (2021) no. 3, pp. 483-491. http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a11/
[1] Andrews, G.E., Askey, R., Roy, R.: Special Functions. 1999, Encyclopedia of Mathematics and its Applications 71. Cambridge University Press, Cambridge,
[2] Chen, R., An, C.: On the evaluation of infinite integrals involving Bessel functions. App. Math. Comput., 235, 2014, 212-220, | DOI | MR
[3] Collins, S.A.: Lens-system diffraction integral written in terms of matrix optics. J. Opt. Soc. Am., 60, 9, 1970, 1168-1177, | DOI
[4] Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products (5th edition). 1994, Academic Press Inc., Boston,
[5] Khan, N.U., Kashmin, T.: On infinite series of three variables involving Whittaker and Bessel functions. Palest. J. Math., 5, 1, 2015, 185-190, | MR
[6] Khan, N.U., Usman, T., Ghayasuddin, M.: A note on integral transforms associated with Humbert's confluent hypergeometric function. Electron. J. Math. Anal. Appl., 4, 2, 2016, 259-265,
[7] Rainville, E.D.: Intermediate Differential Equations. 1964, Macmillan,
[8] Rainville, E.D.: Special Functions. 1960, Macmillan Company, New York. Reprinted by Chelsea Publishing Company, Bronx, New York (1971),
[9] Srivastava, H.M., Manocha, H.L.: A Treatise on Generating Functions. 1984, Ellis Horwood Series: Mathematics and its Applications. Ellis Horwood Ltd., Chichester; Halsted Press, New York, | Zbl
[10] Watson, G.N.: A Treatise on the Theory of Bessel Functions (second edition). 1944, Cambridge University Press, Cambridge,
[11] Whittaker, E.T.: An expression of certain known functions as generalized hypergeometric functions. Bull. Amer. Math. Soc., 10, 3, 1903, 125\IL2\textendash 134, | DOI
[12] Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis (reprint of the fourth (1927) edition). 1996, Cambridge Mathematical Library, Cambridge University Press, Cambridge,
[13] Xu, Y., Zhou, G.: Circular Lorentz-Gauss beams. J. Opt. Soc. Am. A., 36, 2, 2019, 179-185, | DOI