Keywords: Appell sequence; Apostol-Bernoulli polynomial; Apostol-Euler polynomial; generalized Bernoulli polynomial; primitive Dirichlet character.
@article{COMIM_2021_29_3_a1,
author = {Bencherif, Farid and Boumahdi, Rachid and Garici, Tarek},
title = {Symmetric identity for polynomial sequences satisfying $A_{n+1}^\prime (x)=(n+1)A_n(x)$},
journal = {Communications in Mathematics},
pages = {343--355},
year = {2021},
volume = {29},
number = {3},
mrnumber = {4355417},
zbl = {1480.05012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a1/}
}
TY - JOUR
AU - Bencherif, Farid
AU - Boumahdi, Rachid
AU - Garici, Tarek
TI - Symmetric identity for polynomial sequences satisfying $A_{n+1}^\prime (x)=(n+1)A_n(x)$
JO - Communications in Mathematics
PY - 2021
SP - 343
EP - 355
VL - 29
IS - 3
UR - http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a1/
LA - en
ID - COMIM_2021_29_3_a1
ER -
%0 Journal Article
%A Bencherif, Farid
%A Boumahdi, Rachid
%A Garici, Tarek
%T Symmetric identity for polynomial sequences satisfying $A_{n+1}^\prime (x)=(n+1)A_n(x)$
%J Communications in Mathematics
%D 2021
%P 343-355
%V 29
%N 3
%U http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a1/
%G en
%F COMIM_2021_29_3_a1
Bencherif, Farid; Boumahdi, Rachid; Garici, Tarek. Symmetric identity for polynomial sequences satisfying $A_{n+1}^\prime (x)=(n+1)A_n(x)$. Communications in Mathematics, Tome 29 (2021) no. 3, pp. 343-355. http://geodesic.mathdoc.fr/item/COMIM_2021_29_3_a1/
[1] Agoh, T.: Shortened recurrence relations for generalized Bernoulli numbers and polynomials. Journal of Number Theory, 176, 2017, 149-173, Elsevier, | DOI | MR
[2] Appell, P.: Sur une classe de polynômes. Annales Scientifiques de l'École Normale Supérieure, 9, 1880, 119-144,
[3] Sun, W.Y.C. Chen,L.H.: Extended Zeilberger's algorithm for identities on Bernoulli and Euler polynomials. Journal of Number Theory, 129, 9, 2009, 2111-2132, Elsevier, | DOI | MR
[4] Gel'fand, I.M., Shilov, G.E.: Generalized Functions, Vol. 1: Properties and Operations. 1964, Acad. Press, New York,
[5] Gelfand, M.B.: A note on a certain relation among Bernoulli numbers. Baškir. Gos. Univ. Ucen. Zap. Vyp, 31, 1968, 215-216,
[6] Gessel, I.M.: Applications of the classical umbral calculus. Algebra Univers., 49, 4, 2003, 397-434, | DOI | MR
[7] He, Y., Zhang, W.: Some symmetric identities involving a sequence of polynomials. The Electronic Journal of Combinatorics, 17, N7, 2010, 7pp, | DOI | MR
[8] Kaneko, M.: A recurrence formula for the Bernoulli numbers. Proceedings of the Japan Academy, Series A, Mathematical Sciences, 71, 8, 1995, 192-193, The Japan Academy,
[9] Luo, Q.-M., Srivastava, H.M.: Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials. Journal of Mathematical Analysis and Applications, 308, 1, 2005, 290-302, Elsevier, | DOI | MR
[10] Momiyama, H.: A new recurrence formula for Bernoulli numbers. Fibonacci Quarterly, 39, 3, 2001, 285-288, THE FIBONACCI ASSOCIATION, | MR
[11] Prévost, M.: Padé approximation and Apostol-Bernoulli and Apostol-Euler polynomials. Journal of computational and applied mathematics, 233, 11, 2010, 3005-3017, Elsevier, | DOI | MR
[12] Rota, G.-C.: The number of partitions of a set. The American Mathematical Monthly, 71, 5, 1964, 498-504, Taylor & Francis, | DOI
[13] Stern, M.: Beiträge zur Theorie der Bernoullischen und Eulerschen Zahlen. Abhandlungen der Königlichen Gesellschaft der Wissenschaften in Göttingen, 26, 1880, 3-46,
[14] Sun, Z.-W.: Combinatorial identities in dual sequences. European Journal of Combinatorics, 24, 6, 2003, 709-718, Elsevier, | DOI | MR
[15] Ettingshausen, A. von: Vorlesungen über die höhere Mathematik. 1827, C. Gerold, Vienna,
[16] Seidel, P.L. von: Uber eine einfache Entstehungsweise der Bernoullischen Zahlen und einiger verwandten Reihen, Sitzungsberichte der Münch. Akad. Math. Phys. Classe, 7, 1877, 157-187,
[17] Wu, K.-J., Sun, Z.-W., Pan, H.: Some identities for Bernoulli and Euler polynomials. Fibonacci Quarterly, 42, 4, 2004, 295-299, | MR