A generalisation of Amitsur's A-polynomials
Communications in Mathematics, Tome 29 (2021) no. 2, pp. 281-289
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We find examples of polynomials $f\in D[t;\sigma ,\delta ]$ whose eigenring $\mathcal {E}(f)$ is a central simple algebra over the field $F = C \cap \mathrm {Fix}(\sigma ) \cap \mathrm {Const}(\delta )$.
We find examples of polynomials $f\in D[t;\sigma ,\delta ]$ whose eigenring $\mathcal {E}(f)$ is a central simple algebra over the field $F = C \cap \mathrm {Fix}(\sigma ) \cap \mathrm {Const}(\delta )$.
Classification : 16S36, 17A35, 17A36, 17A60
Keywords: Skew polynomial ring; reducible skew polynomials; eigenspace; nonassociative algebra; semisimple Artinian ring.
@article{COMIM_2021_29_2_a9,
     author = {Owen, Adam and Pumpl\"un, Susanne},
     title = {A generalisation of {Amitsur's} {A-polynomials}},
     journal = {Communications in Mathematics},
     pages = {281--289},
     year = {2021},
     volume = {29},
     number = {2},
     mrnumber = {4285758},
     zbl = {07426424},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2021_29_2_a9/}
}
TY  - JOUR
AU  - Owen, Adam
AU  - Pumplün, Susanne
TI  - A generalisation of Amitsur's A-polynomials
JO  - Communications in Mathematics
PY  - 2021
SP  - 281
EP  - 289
VL  - 29
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/COMIM_2021_29_2_a9/
LA  - en
ID  - COMIM_2021_29_2_a9
ER  - 
%0 Journal Article
%A Owen, Adam
%A Pumplün, Susanne
%T A generalisation of Amitsur's A-polynomials
%J Communications in Mathematics
%D 2021
%P 281-289
%V 29
%N 2
%U http://geodesic.mathdoc.fr/item/COMIM_2021_29_2_a9/
%G en
%F COMIM_2021_29_2_a9
Owen, Adam; Pumplün, Susanne. A generalisation of Amitsur's A-polynomials. Communications in Mathematics, Tome 29 (2021) no. 2, pp. 281-289. http://geodesic.mathdoc.fr/item/COMIM_2021_29_2_a9/

[1] Albert, A.A.: On nonassociative division algebras. Transactions of the American Mathematical Society, 72, 2, 1952, 296-309, JSTOR, | DOI

[2] Amitsur, A.S.: Differential polynomials and division algebras. Annals of Mathematics, 1954, 245-278, JSTOR, | DOI

[3] Amitsur, A.S.: Non-commutative cyclic fields. Duke Mathematical Journal, 21, 1, 1954, 87-105, Duke University Press, | DOI

[4] Amitsur, A.S.: Generic splitting fields of central simple algebras. Annals of Mathematics, 62, 2, 1955, 8-43, JSTOR, | DOI

[5] Bourbaki, N.: Elements of mathematics. 2003, Springer,

[6] Brown, C., Pumplün, S.: How a nonassociative algebra reflects the properties of a skew polynomial. Glasgow Mathematical Journal, 63, 1, 2021, 6-26, Cambridge University Press, | DOI

[7] Brown, C.: Petit algebras and their automorphisms. 2018, PhD Thesis, University of Nottingham. Online at arXiv:1806.00822.

[8] Carcanague, J.: Quelques résultats sur les anneaux de Ore. CR Acad. Sci. Paris Sr. AB, 269, 1969, A749-A752,

[9] Cohn, P.M.: Noncommutative unique factorization domains. Transactions of the American Mathematical Society, 109, 2, 1963, 313-331, | DOI

[10] Gòmez-Torrecillas, J., Lobillo, F. J., Navarro, G.: Computing the bound of an Ore polynomial. Applications to factorization. Journal of Symbolic Computation, 92, 2019, 269-297, Elsevier, | DOI

[11] Gòmez-Torrecillas, J.: Basic module theory over non-commutative rings with computational aspects of operator algebras. With an appendix by V. Levandovskyy. Algebraic and Algorithmic Aspects of Differential and Integral Operators. AADIOS 2012. Lecture Notes in Computer Science, 8372, 2014, 23-82, Springer,

[12] Goodearl, K. R., Bruce, J. W., Warfield, R. B.: An introduction to noncommutative Noetherian rings. 61, 2004, Cambridge University Press,

[13] Jacobson, N.: Finite-dimensional division algebras over fields. 1996, Springer,

[14] Jacobson, N.: The theory of rings. 2, 1943, American Mathematical Society,

[15] McConnell, J.C., Robson, C.J., Small, L.W.: Noncommutative noetherian rings. 30, 2001, American Mathematical Soc.,

[16] Ore, O.: Theory of non-commutative polynomials. Annals of Mathematics, 1933, 480-508, JSTOR, | DOI | Zbl

[17] Owen, A.: On the right nucleus of Petit algebras. PhD Thesis, University of Nottingham, in preparation..

[18] Pumplün, S.: Algebras whose right nucleus is a central simple algebra. Journal of Pure and Applied Algebra, 222, 9, 2018, 2773-2783, Elsevier, | DOI