Actions of the additive group $ {G}_a$ on certain noncommutative deformations of the plane
Communications in Mathematics, Tome 29 (2021) no. 2, pp. 269-279
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We connect the theorems of Rentschler \cite {rR68} and Dixmier \cite {jD68} on locally nilpotent derivations and automorphisms of the polynomial ring $A _0$ and of the Weyl algebra $A _1$, both over a field of characteristic zero, by establishing the same type of results for the family of algebras $$A _h=\langle x, y\mid yx-xy=h(x)\rangle \,,$$ where $h$ is an arbitrary polynomial in $x$. In the second part of the paper we consider a field $\mathbb{F}$ of prime characteristic and study $\mathbb{F}[t]$\HH comodule algebra structures on $A _h$. We also compute the Makar-Limanov invariant of absolute constants of $A _h$ over a field of arbitrary characteristic and show how this subalgebra determines the automorphism group of $A _h$.
We connect the theorems of Rentschler \cite {rR68} and Dixmier \cite {jD68} on locally nilpotent derivations and automorphisms of the polynomial ring $A _0$ and of the Weyl algebra $A _1$, both over a field of characteristic zero, by establishing the same type of results for the family of algebras $$A _h=\langle x, y\mid yx-xy=h(x)\rangle \,,$$ where $h$ is an arbitrary polynomial in $x$. In the second part of the paper we consider a field $\mathbb{F}$ of prime characteristic and study $\mathbb{F}[t]$\HH comodule algebra structures on $A _h$. We also compute the Makar-Limanov invariant of absolute constants of $A _h$ over a field of arbitrary characteristic and show how this subalgebra determines the automorphism group of $A _h$.
Classification : 13N15, 16S10, 16S32, 16W20
Keywords: Derivations; iterative higher derivations; rings of differential operators; Weyl algebra
@article{COMIM_2021_29_2_a8,
     author = {Kaygorodov, Ivan and Lopes, Samuel A. and Mashurov, Farukh},
     title = {Actions of the additive group $ {G}_a$ on certain noncommutative deformations of the plane},
     journal = {Communications in Mathematics},
     pages = {269--279},
     year = {2021},
     volume = {29},
     number = {2},
     mrnumber = {4285757},
     zbl = {07426423},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2021_29_2_a8/}
}
TY  - JOUR
AU  - Kaygorodov, Ivan
AU  - Lopes, Samuel A.
AU  - Mashurov, Farukh
TI  - Actions of the additive group $ {G}_a$ on certain noncommutative deformations of the plane
JO  - Communications in Mathematics
PY  - 2021
SP  - 269
EP  - 279
VL  - 29
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/COMIM_2021_29_2_a8/
LA  - en
ID  - COMIM_2021_29_2_a8
ER  - 
%0 Journal Article
%A Kaygorodov, Ivan
%A Lopes, Samuel A.
%A Mashurov, Farukh
%T Actions of the additive group $ {G}_a$ on certain noncommutative deformations of the plane
%J Communications in Mathematics
%D 2021
%P 269-279
%V 29
%N 2
%U http://geodesic.mathdoc.fr/item/COMIM_2021_29_2_a8/
%G en
%F COMIM_2021_29_2_a8
Kaygorodov, Ivan; Lopes, Samuel A.; Mashurov, Farukh. Actions of the additive group $ {G}_a$ on certain noncommutative deformations of the plane. Communications in Mathematics, Tome 29 (2021) no. 2, pp. 269-279. http://geodesic.mathdoc.fr/item/COMIM_2021_29_2_a8/

[1] J. Alev, F. Dumas: Invariants du corps de Weyl sous l'action de groupes finis. Communications in Algebra, 25, 5, 1997, 1655-1672, Taylor & Francis, | DOI

[2] Bavula, V., Jordan, D.: Isomorphism problems and groups of automorphisms for generalized Weyl algebras. Transactions of the American Mathematical Society, 353, 2, 2001, 769-794, | DOI

[3] Belov-Kanel, A., Kontsevich, M.: The Jacobian conjecture is stably equivalent to the Dixmier conjecture. Moscow Mathematical Journal, 7, 2, 2007, 209-218, | DOI

[4] Benkart, G., Lopes, S.A., Ondrus, M.: A parametric family of subalgebras of the Weyl algebra II. Irreducible modules. Recent developments in algebraic and combinatorial aspects of representation theory, vol. 602 of Contemporary Mathematics, 2013, 73-98, American Mathematical Society, | DOI

[5] Benkart, G., Lopes, S.A., Ondrus, M.: Derivations of a parametric family of subalgebras of the Weyl algebra. Journal of Algebra, 424, 2015, 46-97, Elsevier, | DOI

[6] Benkart, G., Lopes, S.A., Ondrus, M.: A parametric family of subalgebras of the Weyl algebra I. Structure and automorphisms. Transactions of the American Mathematical Society, 367, 3, 2015, 1993-2021, | DOI

[7] Crachiola, A., Makar-Limanov, L.: On the rigidity of small domains. Journal of Algebra, 284, 1, 2005, 1-12, Elsevier, | DOI

[8] Crachiola, A.J.: The hypersurface $x+x^2y+z^2+t^3=0$ over a field of arbitrary characteristic. Proceedings of the American Mathematical Society, 134, 5, 2006, 1289-1298, | DOI

[9] Crode, S.D., Shestakov, I.P.: Locally nilpotent derivations and automorphisms of free associative algebra with two generators. Communications in Algebra, 48, 7, 2020, 3091-3098, Taylor & Francis, | DOI

[10] Dixmier, J.: Sur les algèbres de Weyl. Bulletin de la Société mathématique de France, 96, 1968, 209-242,

[11] Dixmier, J.: Enveloping algebras. 1996, American Mathematical Society, Vol. 11 of Graduate Studies in Mathematics. Revised reprint of the 1977 translation..

[12] Drensky, V., Makar-Limanov, L.: Locally nilpotent derivations of free algebra of rank two. SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, 15, 2019, Paper No. 091, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications,

[13] Jung, H.W.E.: Über ganze birationale Transformationen der Ebene. Journal für die Reine und Angewandte Mathematik, 1942, 184, 1942, 161-174, De Gruyter,

[14] Kaygorodov, I., Shestakov, I., Umirbaev, U.: Free generic Poisson fields and algebras. Communications in Algebra, 46, 4, 2018, 1799-1812, Taylor & Francis, | DOI

[15] Makar-Limanov, L.: On the hypersurface $x+x^2y+z^2+t^3=0$ in $\mathbb {C}^4$ or a $\mathbb {C}^3$-like threefold which is not ${C}^3$. Israel Journal of Mathematics, 96, 2, 1996, 419-429, Springer, | DOI

[16] Makar-Limanov, L., Turusbekova, U., Umirbaev, U.: Automorphisms and derivations of free Poisson algebras in two variables. Journal of Algebra, 322, 9, 2009, 3318-3330, Elsevier, | DOI

[17] Miyanishi, M.: $G_{a}$-action of the affine plane. Nagoya Mathematical Journal, 41, 1971, 97-100, Cambridge University Press, | DOI

[18] Rentschler, R.: Opérations du groupe additif sur le plan affine. Comptes rendus de l'Académie des Sciences, Sér. A-B, 267, 1968, 384-387,

[19] Restuccia, G., Schneider, H.J.: On actions of infinitesimal group schemes. Journal of Algebra, 261, 2, 2003, 229-244, Academic Press, | DOI

[20] Restuccia, G., Schneider, H.J.: On actions of the additive group on the Weyl algebra. Atti della Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche, Matematiche e Naturali, 83, 1, 2005, 9pp,

[21] Tsuchimoto, Y.: Endomorphisms of Weyl algebra and $p$-curvatures. Osaka Journal of Mathematics, 42, 2, 2005, 435-452, Osaka University and Osaka City University, Departments of Mathematics,

[22] Essen, A. Van den: Polynomial automorphisms and the Jacobian conjecture. 190, 2000, Birkhäuser, Progress in Mathematics, vol. 190..