Keywords: Derivations; iterative higher derivations; rings of differential operators; Weyl algebra
@article{COMIM_2021_29_2_a8,
author = {Kaygorodov, Ivan and Lopes, Samuel A. and Mashurov, Farukh},
title = {Actions of the additive group $ {G}_a$ on certain noncommutative deformations of the plane},
journal = {Communications in Mathematics},
pages = {269--279},
year = {2021},
volume = {29},
number = {2},
mrnumber = {4285757},
zbl = {07426423},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2021_29_2_a8/}
}
TY - JOUR
AU - Kaygorodov, Ivan
AU - Lopes, Samuel A.
AU - Mashurov, Farukh
TI - Actions of the additive group $ {G}_a$ on certain noncommutative deformations of the plane
JO - Communications in Mathematics
PY - 2021
SP - 269
EP - 279
VL - 29
IS - 2
UR - http://geodesic.mathdoc.fr/item/COMIM_2021_29_2_a8/
LA - en
ID - COMIM_2021_29_2_a8
ER -
%0 Journal Article
%A Kaygorodov, Ivan
%A Lopes, Samuel A.
%A Mashurov, Farukh
%T Actions of the additive group $ {G}_a$ on certain noncommutative deformations of the plane
%J Communications in Mathematics
%D 2021
%P 269-279
%V 29
%N 2
%U http://geodesic.mathdoc.fr/item/COMIM_2021_29_2_a8/
%G en
%F COMIM_2021_29_2_a8
Kaygorodov, Ivan; Lopes, Samuel A.; Mashurov, Farukh. Actions of the additive group $ {G}_a$ on certain noncommutative deformations of the plane. Communications in Mathematics, Tome 29 (2021) no. 2, pp. 269-279. http://geodesic.mathdoc.fr/item/COMIM_2021_29_2_a8/
[1] J. Alev, F. Dumas: Invariants du corps de Weyl sous l'action de groupes finis. Communications in Algebra, 25, 5, 1997, 1655-1672, Taylor & Francis, | DOI
[2] Bavula, V., Jordan, D.: Isomorphism problems and groups of automorphisms for generalized Weyl algebras. Transactions of the American Mathematical Society, 353, 2, 2001, 769-794, | DOI
[3] Belov-Kanel, A., Kontsevich, M.: The Jacobian conjecture is stably equivalent to the Dixmier conjecture. Moscow Mathematical Journal, 7, 2, 2007, 209-218, | DOI
[4] Benkart, G., Lopes, S.A., Ondrus, M.: A parametric family of subalgebras of the Weyl algebra II. Irreducible modules. Recent developments in algebraic and combinatorial aspects of representation theory, vol. 602 of Contemporary Mathematics, 2013, 73-98, American Mathematical Society, | DOI
[5] Benkart, G., Lopes, S.A., Ondrus, M.: Derivations of a parametric family of subalgebras of the Weyl algebra. Journal of Algebra, 424, 2015, 46-97, Elsevier, | DOI
[6] Benkart, G., Lopes, S.A., Ondrus, M.: A parametric family of subalgebras of the Weyl algebra I. Structure and automorphisms. Transactions of the American Mathematical Society, 367, 3, 2015, 1993-2021, | DOI
[7] Crachiola, A., Makar-Limanov, L.: On the rigidity of small domains. Journal of Algebra, 284, 1, 2005, 1-12, Elsevier, | DOI
[8] Crachiola, A.J.: The hypersurface $x+x^2y+z^2+t^3=0$ over a field of arbitrary characteristic. Proceedings of the American Mathematical Society, 134, 5, 2006, 1289-1298, | DOI
[9] Crode, S.D., Shestakov, I.P.: Locally nilpotent derivations and automorphisms of free associative algebra with two generators. Communications in Algebra, 48, 7, 2020, 3091-3098, Taylor & Francis, | DOI
[10] Dixmier, J.: Sur les algèbres de Weyl. Bulletin de la Société mathématique de France, 96, 1968, 209-242,
[11] Dixmier, J.: Enveloping algebras. 1996, American Mathematical Society, Vol. 11 of Graduate Studies in Mathematics. Revised reprint of the 1977 translation..
[12] Drensky, V., Makar-Limanov, L.: Locally nilpotent derivations of free algebra of rank two. SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, 15, 2019, Paper No. 091, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications,
[13] Jung, H.W.E.: Über ganze birationale Transformationen der Ebene. Journal für die Reine und Angewandte Mathematik, 1942, 184, 1942, 161-174, De Gruyter,
[14] Kaygorodov, I., Shestakov, I., Umirbaev, U.: Free generic Poisson fields and algebras. Communications in Algebra, 46, 4, 2018, 1799-1812, Taylor & Francis, | DOI
[15] Makar-Limanov, L.: On the hypersurface $x+x^2y+z^2+t^3=0$ in $\mathbb {C}^4$ or a $\mathbb {C}^3$-like threefold which is not ${C}^3$. Israel Journal of Mathematics, 96, 2, 1996, 419-429, Springer, | DOI
[16] Makar-Limanov, L., Turusbekova, U., Umirbaev, U.: Automorphisms and derivations of free Poisson algebras in two variables. Journal of Algebra, 322, 9, 2009, 3318-3330, Elsevier, | DOI
[17] Miyanishi, M.: $G_{a}$-action of the affine plane. Nagoya Mathematical Journal, 41, 1971, 97-100, Cambridge University Press, | DOI
[18] Rentschler, R.: Opérations du groupe additif sur le plan affine. Comptes rendus de l'Académie des Sciences, Sér. A-B, 267, 1968, 384-387,
[19] Restuccia, G., Schneider, H.J.: On actions of infinitesimal group schemes. Journal of Algebra, 261, 2, 2003, 229-244, Academic Press, | DOI
[20] Restuccia, G., Schneider, H.J.: On actions of the additive group on the Weyl algebra. Atti della Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche, Matematiche e Naturali, 83, 1, 2005, 9pp,
[21] Tsuchimoto, Y.: Endomorphisms of Weyl algebra and $p$-curvatures. Osaka Journal of Mathematics, 42, 2, 2005, 435-452, Osaka University and Osaka City University, Departments of Mathematics,
[22] Essen, A. Van den: Polynomial automorphisms and the Jacobian conjecture. 190, 2000, Birkhäuser, Progress in Mathematics, vol. 190..