Conservative algebras of $2$-dimensional algebras, III
Communications in Mathematics, Tome 29 (2021) no. 2, pp. 255-267 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In the present paper we prove that every local and $2$-local derivation on conservative algebras of $2$-dimensional algebras are derivations. Also, we prove that every local and $2$-local automorphism on conservative algebras of $2$-dimensional algebras are automorphisms.
In the present paper we prove that every local and $2$-local derivation on conservative algebras of $2$-dimensional algebras are derivations. Also, we prove that every local and $2$-local automorphism on conservative algebras of $2$-dimensional algebras are automorphisms.
Classification : 17A15, 17A30
Keywords: Conservative algebra; derivation; local derivation; $2$-local derivation; automorphism; local automorphism; $2$-local automorphism
@article{COMIM_2021_29_2_a7,
     author = {Arzikulov, Farhodjon and Umrzaqov, Nodirbek},
     title = {Conservative algebras of $2$-dimensional algebras, {III}},
     journal = {Communications in Mathematics},
     pages = {255--267},
     year = {2021},
     volume = {29},
     number = {2},
     mrnumber = {4285756},
     zbl = {07426422},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2021_29_2_a7/}
}
TY  - JOUR
AU  - Arzikulov, Farhodjon
AU  - Umrzaqov, Nodirbek
TI  - Conservative algebras of $2$-dimensional algebras, III
JO  - Communications in Mathematics
PY  - 2021
SP  - 255
EP  - 267
VL  - 29
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/COMIM_2021_29_2_a7/
LA  - en
ID  - COMIM_2021_29_2_a7
ER  - 
%0 Journal Article
%A Arzikulov, Farhodjon
%A Umrzaqov, Nodirbek
%T Conservative algebras of $2$-dimensional algebras, III
%J Communications in Mathematics
%D 2021
%P 255-267
%V 29
%N 2
%U http://geodesic.mathdoc.fr/item/COMIM_2021_29_2_a7/
%G en
%F COMIM_2021_29_2_a7
Arzikulov, Farhodjon; Umrzaqov, Nodirbek. Conservative algebras of $2$-dimensional algebras, III. Communications in Mathematics, Tome 29 (2021) no. 2, pp. 255-267. http://geodesic.mathdoc.fr/item/COMIM_2021_29_2_a7/

[1] Ayupov, Sh., Arzikulov, F.: $2$-local derivations on semi-finite von Neumann algebras. Glasgow Mathematical Journal, 56, 1, 2014, 9-12, Cambridge University Press, | DOI

[2] Ayupov, Sh., Arzikulov, F.: $2$-Local derivations on associative and Jordan matrix rings over commutative rings. Linear Algebra and its Applications, 522, 2017, 28-50, Elsevier, | DOI

[3] Ayupov, Sh., Kudaybergenov, K.: $2$-local derivations and automorphisms on $B(H)$. Journal of Mathematical Analysis and Applications, 395, 1, 2012, 15-18, Elsevier, | DOI

[4] Ayupov, Sh., Kudaybergenov, K.: $2$-local derivations on von Neumann algebras. Positivity, 19, 3, 2015, 445-455, Springer, | DOI

[5] Ayupov, Sh., Kudaybergenov, K.: $2$-Local automorphisms on finite-dimensional Lie algebras. Linear Algebra and its Applications, 507, 2016, 121-131, Elsevier, | DOI

[6] Ayupov, Sh., Kudaybergenov, K.: Local derivations on finite-dimensional Lie algebras. Linear Algebra and its Applications, 493, 2016, 381-398, Elsevier, | DOI

[7] Ayupov, Sh., Kudaybergenov, K., Omirov, B.: Local and 2-local derivations and automorphisms on simple Leibniz algebras. Bulletin of the Malaysian Mathematical Sciences Society, 43, 3, 2020, 2199-2234, Springer, | DOI

[8] Ayupov, Sh., Kudaybergenov, K., Rakhimov, I.: 2-Local derivations on finite-dimensional Lie algebras. Linear Algebra and its Applications, 474, 2015, 1-11, Elsevier, | DOI

[9] Chen, Z., Wang, D.: $2$-Local automorphisms of finite-dimensional simple Lie algebras. Linear Algebra and its Applications, 486, 2015, 335-344, Elsevier, | DOI

[10] Costantini, M.: Local automorphisms of finite dimensional simple Lie algebras. Linear Algebra and its Applications, 562, 2019, 123-134, Elsevier, | DOI

[11] Kadison, R.V.: Local derivations. Journal of Algebra, 130, 2, 1990, 494-509, | DOI

[12] Kantor, I.L.: Certain generalizations of Jordan algebras (Russian). Trudy Sem. Vektor. Tenzor. Anal., 16, 1972, 407-499,

[13] Kantor, I.L.: Extension of the class of Jordan algebras. Algebra and Logic, 28, 2, 1989, 117-121, Springer, | DOI

[14] Kantor, I.L.: The universal conservative algebra. Siberian Mathematical Journal, 31, 3, 1990, 388-395, Springer, | DOI

[15] Kaygorodov, I., Lopatin, A., Popov, Yu.: Conservative algebras of $2$-dimensional algebras. Linear Algebra and its Applications, 486, 2015, 255-274, Elsevier, | DOI

[16] Kaygorodov, I., Volkov, Yu.: Conservative algebras of $2$-dimensional algebras, II. Communications in Algebra, 45, 8, 2017, 3413-3421, Taylor & Francis,

[17] Kaygorodov, I., Popov, Yu., Pozhidaev, A.: The universal conservative superalgebra. Communications in Algebra, 47, 10, 2019, 4066-4076, Taylor & Francis, | DOI

[18] Kaygorodov, I., Khudoyberdiyev, A., Sattarov, A.: One-generated nilpotent terminal algebras. Communications in Algebra, 48, 10, 2020, 4355-4390, Taylor & Francis, | DOI

[19] Kaygorodov, I., Khrypchenko, M., Popov, Yu.: The algebraic and geometric classification of nilpotent terminal algebras. Journal of Pure and Applied Algebra, 225, 6, 2021, 106625, Elsevier, | DOI

[20] Khrypchenko, M.: Local derivations of finitary incidence algebras. Acta Mathematica Hungarica, 154, 1, 2018, 48-55, Springer, | DOI

[21] Kim, S., Kim, J.: Local automorphisms and derivations on $\mathbb {M}_n$. Proceedings of the American Mathematical Society, 132, 5, 2004, 1389-1392, | DOI

[22] Larson, D.R., Sourour, A.R.: Local derivations and local automorphisms of $\mathcal {B}(X)$. Proceedings of Symposia in Pure Mathematics, 51, 2, 1990, 187-194,

[23] Lin, Y., Wong, T.: A note on 2-local maps. Proceedings of the Edinburgh Mathematical Society, 49, 3, 2006, 701-708, Cambridge University Press, | DOI

[24] Petersson, H.P.: The classification of two-dimensional nonassociative algebras. Resultate der Mathematik, 37, 1--2, 2000, 120-154, Citeseer,

[25] Popov, Yu.: Conservative algebras and superalgebras: a survey. Communications in Mathematics, 28, 2, 2020, 231-251, Sciendo, | DOI

[26] Šemrl, P.: Local automorphisms and derivations on $\mathcal {B}(H)$. Proceedings of the American Mathematical Society, 125, 9, 1997, 2677-2680, | DOI