Keywords: Rota-Baxter operator; Reynolds operator; Nijenhuis operator; average operator; nilpotent; associative algebras
@article{COMIM_2021_29_2_a5,
author = {Abdujabborov, N.G. and Kodirova, I.A. Karimjanov and M.A.},
title = {Rota-type operators on 3-dimensional nilpotent associative algebras},
journal = {Communications in Mathematics},
pages = {227--241},
year = {2021},
volume = {29},
number = {2},
mrnumber = {4285753},
zbl = {07426420},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2021_29_2_a5/}
}
TY - JOUR AU - Abdujabborov, N.G. AU - Kodirova, I.A. Karimjanov and M.A. TI - Rota-type operators on 3-dimensional nilpotent associative algebras JO - Communications in Mathematics PY - 2021 SP - 227 EP - 241 VL - 29 IS - 2 UR - http://geodesic.mathdoc.fr/item/COMIM_2021_29_2_a5/ LA - en ID - COMIM_2021_29_2_a5 ER -
Abdujabborov, N.G.; Kodirova, I.A. Karimjanov and M.A. Rota-type operators on 3-dimensional nilpotent associative algebras. Communications in Mathematics, Tome 29 (2021) no. 2, pp. 227-241. http://geodesic.mathdoc.fr/item/COMIM_2021_29_2_a5/
[1] Bai, R., Guo, L., Li, J., Wu, Y.: Rota-Baxter 3-Lie algebras. J. Math. Phys., 54, 6, 2013, 063504,
[2] Baxter, G.: An analytic problem whose solution follows from a simple algebraic identity. Pac. J. Math., 10, 1960, 731-742, | DOI
[3] Belavin, A.A., Drinfel'd, V.G.: Solutions of the classical Yang-Baxter equation for simple Lie algebras. Funct. Anal. its Appl., 16, 3, 1982, 159-180, | DOI
[4] Benito, P., Gubarev, V., Pozhidaev, A.: Rota-Baxter operators on quadratic algebras. Mediterr. J. Math, 15, 2018, 1-23, | DOI
[5] Chengand, Y., Su, Y.: Quantum deformations of the Heisenberg-Virasoro algebra. Algebra Colloq., 20, 2, 2013, 299-308, | DOI
[6] Graaf, W.A. De: Classification of nilpotent associative algebras of small dimension. Int. J. Algebra Comput., 28, 1, 2018, 133-161, | DOI
[7] Ebrahimi-Fard, K.: Loday-type algebras and the Rota-Baxter relation. Lett. Math. Phys., 61, 2, 2002, 139-147, | DOI
[8] Gao, X., Liu, M., Bai, C, Jing, N.: Rota-Baxter operators on Witt and Virasoro algebras. J. Geom. Phys., 108, 2016, 1-20, | DOI
[9] Guo, L.: An Introdction to Rota-Baxter Algebra. 2012, International Press, Beijing, China,
[10] Guo, L., Keigher, W.: Baxter algebras and shuffle products. Adv. Math., 150, 1, 2000, 117-149, | DOI
[11] Guo, L., Liu, Z.: Rota-Baxter operators on generalized power series rings. J. Algebra Its Appl., 8, 4, 2009, 557-564,
[12] Hazlett, O.C.: On the classification and invariantive characterization of nilpotent algebras. Am. J. Math., 38, 2, 1916, 109-138, | DOI
[13] Karimjanov, I., Kaygorodov, I., Ladra, M.: Rota-type operators on null-filiform associative algebras. Linear and Multilinear algebra, 68, 1, 2020, 205-219, | DOI
[14] Kruse, R.L., Price, D.T.: Nilpotent Rings. 1969, Gordon and Breach Science Publishers, New York,
[15] Makhlouf, A., Yau, D.: Rota-Baxter Hom-Lie-admissible algebras. Communications in Algebra, 42, 3, 2014, 1231-1257, | DOI
[16] Mazurek, R.: Rota-Baxter operators on skew generalized power series rings. J. Algebra Its Appl., 13, 7, 2014, 1450048, | DOI
[17] Mazzolla, G.: The algebraic and geometric classification of associative algebras of dimension five. Manuscr. Math., 27, 1, 1979, 81-101, | DOI
[18] Mazzolla, G.: Generic finite schemes and Hochschild cocycles. Comment. Math. Helv., 55, 2, 1980, 267-293, | DOI
[19] Pan, Y., Liu, Q., Bai, C., Guo, L.: Post Lie algebra structures on the Lie algebra $sl(2,\mathbb {C})$. Electron. J. Linear Algebra, 23, 2012, 180-197,
[20] Pei, J., Bai, C., Guo, L.: Rota-Baxter operators on $sl(2,\mathbb {C})$ and solutions of the classical Yang-Baxter equation. J. Math. Phys., 55, 2, 2014, 021701, | DOI
[21] Tang, X., Zhang, Y., Sun., and Q.: Rota-Baxter operators on 4-dimensional complex simple associative algebras. Appl. Math. Comput., 229, 2014, 173-186,
[22] Yu, H.: Classification of monomial Rota-Baxter operators on $k[x]$. J. Algebra Its Appl., 15, 5, 2016, 1650087, | DOI
[23] Zheng, S., Guo, L., Rosenkranz, M.: Rota-Baxter operators on the polynomial algebra, integration, and averaging operators. Pac. J. Math., 275, 2, 2015, 481-507, | DOI