Unified computational approach to nilpotent algebra classification problems
Communications in Mathematics, Tome 29 (2021) no. 2, pp. 215-226 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this article, we provide an algorithm with Wolfram Mathematica code that gives a unified computational power in classification of finite dimensional nilpotent algebras using Skjelbred-Sund method. To illustrate the code, we obtain new finite dimensional Moufang algebras.
In this article, we provide an algorithm with Wolfram Mathematica code that gives a unified computational power in classification of finite dimensional nilpotent algebras using Skjelbred-Sund method. To illustrate the code, we obtain new finite dimensional Moufang algebras.
Classification : 17A30, 68W30
Keywords: Algebra; Skjelbred-Sund classification; finite dimensional nilpotent algebra; Wolfram Mathematica; symbolic solver; algorithm
@article{COMIM_2021_29_2_a4,
     author = {Kadyrov, Shirali and Mashurov, Farukh},
     title = {Unified computational approach to nilpotent algebra classification problems},
     journal = {Communications in Mathematics},
     pages = {215--226},
     year = {2021},
     volume = {29},
     number = {2},
     mrnumber = {4285752},
     zbl = {07426419},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2021_29_2_a4/}
}
TY  - JOUR
AU  - Kadyrov, Shirali
AU  - Mashurov, Farukh
TI  - Unified computational approach to nilpotent algebra classification problems
JO  - Communications in Mathematics
PY  - 2021
SP  - 215
EP  - 226
VL  - 29
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/COMIM_2021_29_2_a4/
LA  - en
ID  - COMIM_2021_29_2_a4
ER  - 
%0 Journal Article
%A Kadyrov, Shirali
%A Mashurov, Farukh
%T Unified computational approach to nilpotent algebra classification problems
%J Communications in Mathematics
%D 2021
%P 215-226
%V 29
%N 2
%U http://geodesic.mathdoc.fr/item/COMIM_2021_29_2_a4/
%G en
%F COMIM_2021_29_2_a4
Kadyrov, Shirali; Mashurov, Farukh. Unified computational approach to nilpotent algebra classification problems. Communications in Mathematics, Tome 29 (2021) no. 2, pp. 215-226. http://geodesic.mathdoc.fr/item/COMIM_2021_29_2_a4/

[1] Abdelwahab, H., Calderón, A.J., Kaygorodov, I.: The algebraic and geometric classification of nilpotent binary Lie algebras. International Journal of Algebra and Computation, 29, 6, 2019, 1113-1129, | DOI | MR

[2] Camacho, L., Kaygorodov, I., Lopatkin, V., Salim, M.: The variety of dual Mock-Lie algebras. Communications in Mathematics, 28, 2, 2020, 161-178, | DOI

[3] Cicalò, S., Graaf, W. De, Schneider, C.: Six-dimensional nilpotent Lie algebras. Linear Algebra and its Applications, 436, 1, 2012, 163-189, | DOI

[4] Calderón, A.J., Ouaridi, A.F., Kaygorodov, I.: On the classification of bilinear maps with radical of a fixed codimension. Linear and Multilinear Algebra, 2020, 1-24, DOI: 10.1080/03081087.2020.1849001. | DOI

[5] Jumaniyozov, D., Kaygorodov, I., Khudoyberdiyev, A.: The algebraic and geometric classification of nilpotent noncommutative Jordan algebras. Journal of Algebra and its Applications, 2020, DOI: 10.1142/S0219498821502029. | DOI

[6] Graaf, W. De: Classification of nilpotent associative algebras of small dimension. International Journal of Algebra and Computation, 28, 1, 2018, 133-161, | DOI

[7] Gorshkov, I., Kaygorodov, I., Khrypchenko, M.: The algebraic classification of nilpotent Tortkara algebras. Communications in Algebra, 48, 8, 2020, 3608-3623,

[8] Gorshkov, I., Kaygorodov, I., Kytmanov, A., Salim, M.: The variety of nilpotent Tortkara algebras. Journal of Siberian Federal University. Mathematics & Physics, 12, 2, 2019, 173-184, | DOI

[9] Goze, M., Remm, E.: 2-dimensional algebras. African Journal Of Mathematical Physics, 10, 2, 2011, 81-91,

[10] Hegazi, A.S., Abdelwahab, H.: Classification of five-dimensional nilpotent Jordan algebras. Linear Algebra and its Applications, 494, 2016, 165-218, | DOI

[11] Hegazi, A.S., Abdelwahab, H.: The classification of n-dimensional non-associative Jordan algebras with $(n-3)$-dimensional annihilator. Communications in Algebra, 46, 2, 2018, 629-643, | DOI

[12] Hegazi, A.S., Abdelwahab, H., Martin, A.J. Calderón: The classification of n-dimensional non-Lie Malcev algebras with $(n-4)$-dimensional annihilator. Linear Algebra and its Applications, 505, 2016, 32-56, | DOI

[13] Ismailov, N., Kaygorodov, I., Mashurov, F.: The Algebraic and Geometric Classification of Nilpotent Assosymmetric Algebras. Algebras and Representation Theory, 24, 2021, 135-148, | DOI

[14] Kadyrov, S., Mashurov, F.: Nilpotent algebra classifier code. 2020, https://www.wolframcloud.com/obj/39e8169f-8fbf-4540-aa65-4b01f187f63f

[15] Karimjanov, I., Kaygorodov, I., Khudoyberdiyev, A.: The algebraic and geometric classification of nilpotent Novikov algebras. Journal of Geometry and Physics, 143, 2019, 11-21, | DOI

[16] Kaygorodov, I., Páez-Guillán, M.P., Voronin, V.: The algebraic and geometric classification of nilpotent bicommutative algebras. Algebras and Representation Theory , 23, 2020, 2331-2347,

[17] Kaygorodov, I., Volkov, Yu.: The variety of 2-dimensional algebras over an algebraically closed field. Canadian Journal of Mathematics , 71, 4, 2019, 819-842, | DOI

[18] Loginov, E. K.: Embedding of Strongly Simple Moufang Loops In Simple Alternative Algebras. Mathematical Notes , 54, 6, 1993, 1230-1235, | DOI

[19] Mashurov, F., Kaygorodov, I.: One-generated nilpotent assosymmetric algebras. Journal of Algebra and Its Applications, 2020, DOI: 10.1142/S0219498822500311. | DOI

[20] Shestakov, I., Pérez-Izquierdo, J.M.: An envelope for Malcev algebras. Journal of Algebra, 272, 1, 2004, 379-393, | DOI

[21] Skjelbred, T., Sund, T.: On the classification of nilpotent Lie algebras. Preprint series. Pure Mathematics, 1977, http://urn.nb.no/URN:NBN:no-48289

[22] Zinbiel, G.W.: Encyclopedia of types of algebras 2010. Proceedings of the International Conference in Nankai Series in Pure Applied Mathematics and Theoretical Physics, 9, 2012, 217298,