Keywords: Lie algebra; Leibniz algebra; derivation; pre-derivation; nilpotency; characteristically nilpotent algebra; strongly nilpotent algebra
@article{COMIM_2021_29_2_a3,
author = {Abdurasulov, K.K. and Khudoyberdiyev, A.Kh. and Ladra, M. and Sattarov, A.M.},
title = {Pre-derivations and description of non-strongly nilpotent filiform {Leibniz} algebras},
journal = {Communications in Mathematics},
pages = {187--213},
year = {2021},
volume = {29},
number = {2},
mrnumber = {4285751},
zbl = {07426418},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2021_29_2_a3/}
}
TY - JOUR AU - Abdurasulov, K.K. AU - Khudoyberdiyev, A.Kh. AU - Ladra, M. AU - Sattarov, A.M. TI - Pre-derivations and description of non-strongly nilpotent filiform Leibniz algebras JO - Communications in Mathematics PY - 2021 SP - 187 EP - 213 VL - 29 IS - 2 UR - http://geodesic.mathdoc.fr/item/COMIM_2021_29_2_a3/ LA - en ID - COMIM_2021_29_2_a3 ER -
%0 Journal Article %A Abdurasulov, K.K. %A Khudoyberdiyev, A.Kh. %A Ladra, M. %A Sattarov, A.M. %T Pre-derivations and description of non-strongly nilpotent filiform Leibniz algebras %J Communications in Mathematics %D 2021 %P 187-213 %V 29 %N 2 %U http://geodesic.mathdoc.fr/item/COMIM_2021_29_2_a3/ %G en %F COMIM_2021_29_2_a3
Abdurasulov, K.K.; Khudoyberdiyev, A.Kh.; Ladra, M.; Sattarov, A.M. Pre-derivations and description of non-strongly nilpotent filiform Leibniz algebras. Communications in Mathematics, Tome 29 (2021) no. 2, pp. 187-213. http://geodesic.mathdoc.fr/item/COMIM_2021_29_2_a3/
[1] Albeverio, S., Ayupov, Sh.A., Omirov, B.A., Khudoyberdiyev, A.Kh.: $n$-dimensional filiform Leibniz algebras of length $(n-1)$ and their derivations. J. Algebra, 319, 6, 2008, 2471-2488, | DOI
[2] Ancochea, J.M., Campoamor, R.: Characteristically Nilpotent Lie Algebras: A Survey. Extracta Math., 2, 2001, 153-210,
[3] Ayupov, Sh.A., Omirov, B.A.: On some classes of nilpotent Leibniz algebras. Siberian Math. J., 42, 1, 2001, 15-24, | DOI
[4] Bajo, I.: Lie algebras admitting non-singular prederivations. Indag. Mathem., 8, 4, 1997, 433-437,
[5] Burde, D.: Characteristically nilpotent Lie algebras and symplectic structures. Forum Math., 18, 5, 2006, 769-787, | DOI | Zbl
[6] Burde, D.: Lie algebra prederivations and strongly nilpotent Lie algebras. Comm. Algebra, 30, 7, 2002, 3157-3175, | DOI
[7] Castro-Jiménez, F.J., Núñez Valdés, J.: On characteristically nilpotent filiform Lie algebras of dimension $9$. Comm. Algebra, 23, 8, 1995, 3059-3071,
[8] Dixmier, J., Lister, W.G.: Derivations of nilpotent Lie algebras. Proc. Amer. Math. Soc., 8, 1957, 155-158,
[9] Fialowski, A., Khudoyberdiyev, A.Kh., B.A.Omirov: A characterization of nilpotent Leibniz algebras. Algebr. Represent. Theory, 16, 5, 2013, 1489-1505, | DOI
[10] Gómez, J.R., Jiménez-Merchán, A., Khakimdjanov, Y.: Low-dimensional filiform Lie algebras. J. Pure Appl. Algebra, 130, 2, 1998, 133-158,
[11] Gómez, J.R., Omirov, B.A.: On classification of complex filiform Leibniz algebras. Algebra Colloquium, 22, 1, 2015, 757-774, | DOI
[12] Hilton, P., Pedersen, J.: Catalan numbers, their generalization, and their uses. Math. Intelligencer, 13, 2, 1991, 64-75, | DOI
[13] Jacobson, N.: A note on automorphisms and derivations of Lie algebras. Proc. Amer. Math. Soc., 6, 1955, 281-283, | DOI
[14] Kaygorodov, I., Popov, Yu.: Alternative algebras admitting derivations with invertible values and invertible derivations. Izv. Math., 78, 5, 2014, 922-935, | DOI
[15] Kaygorodov, I., Popov, Yu.: A characterization of nilpotent nonassociative algebras by invertible Leibniz-derivations. J. Algebra, 456, 2016, 323-347, | DOI
[16] Khakimdzhanov, Yu.B.: Characteristically nilpotent Lie algebras. Math. USSR, Sb., 70, 1, 1991, 65-78, | DOI
[17] Khakimdzhanov, Yu.B.: Variété des lois d'algèbres de Lie nilpotentes. Geom. Dedicata, 40, 3, 1991, 269-295,
[18] Khudoyberdiyev, A.Kh., Ladra, M., Omirov, B.A.: The classification of non-characteristically nilpotent Leibniz algebras. Algebr. Represent. Theory, 17, 3, 2014, 945-969, | DOI
[19] Leger, G., Tôgô, S.: Characteristically nilpotent Lie algebras. Duke Math. J., 26, 4, 1959, 623-628, | DOI
[20] Ladra, M., Rikhsiboev, I.M., Turdibaev, R.M.: Automorphisms and derivations of Leibniz algebras. Ukr. Math. J., 68, 7, 2016, 1062-1076, | DOI
[21] Loday, J.-L.: Une version non commutative des algèbres de Leibniz. Enseign. Math., 39, 3-4, 1993, 269-293,
[22] Moens, W.A.: A characterisation of nilpotent Lie algebras by invertible Leibniz-derivations. Comm. Algebra, 41, 2013, 2427-2440, | DOI
[23] Muller, D.: Isometries of bi-invariant pseudo-Riemannian metrics on Lie groups. Geom. Dedicata, 29, 1, 1989, 65-96, | DOI
[24] Omirov, B.A.: On derivations of filiform Leibniz algebras. Math. Notes, 77, 5--6, 2005, 677-685, | DOI
[25] Omirov, B.A., Rakhimov, I.S.: On Lie-like complex filiform Leibniz algebras. Bull. Aust. Math. Soc., 79, 3, 2009, 391-404, | DOI
[26] Rakhimov, I.S., Sozan, J.: Description of nine dimensional complex filiform Leibniz algebras arising from naturally graded non Lie filiform Leibniz algebras. Int. J. Algebra, 3, 17-20, 2009, 969-980,