@article{COMIM_2021_29_1_a5,
author = {Saunders, David J.},
title = {Jets and the variational calculus},
journal = {Communications in Mathematics},
pages = {91--114},
year = {2021},
volume = {29},
number = {1},
mrnumber = {4251307},
zbl = {07413359},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2021_29_1_a5/}
}
Saunders, David J. Jets and the variational calculus. Communications in Mathematics, Tome 29 (2021) no. 1, pp. 91-114. http://geodesic.mathdoc.fr/item/COMIM_2021_29_1_a5/
[1] Anderson, I.M.: The variational bicomplex. Technical report of Utah State University, 1989, available at https://ncatlab.org/nlab/files/AndersonVariationalBicomplex.pdf
[2] Anderson, I.M., Duchamp, T.E.: Variational principles for second-order quasi-linear scalar equations. J. Diff. Eq., 51, 1, 1984, 1-47, | DOI | MR
[3] Betounes, D.E.: Extensions of the classical Cartan form. Phys. Rev. D, 29, 1984, 599-606, | DOI | MR
[4] Borel, É.: Sur quelques points de la théorie des fonctions. Ann. scient. de l'École Norm. Sup., 3, 12, 1895, 9-55, | MR
[5] Carathéodory, C.: Über die Variationsrechnung bei mehrfachen Integralen. Acta Szeged Sect. Scient. Mathem., 4, 1929, 193-216,
[6] Crampin, M., Saunders, D.J.: The Hilbert--Carathéodory and Poincaré--Cartan forms for higher-order multiple-integral variational problems. Houston J. Math., 30, 3, 2004, 657-689, | MR
[7] Do, T.: The inverse problem in the calculus of variations via exterior differential systems. 2016, Ph.D. Thesis, La Trobe University, Melbourne, Australia.
[8] Do, T., Prince, G.: New progress in the inverse problem in the calculus of variations. Diff. Geom. Appl., 45, 2016, 148-179, | DOI | MR
[9] Ehresmann, C.: Les prolongements d'une variété différentiable: calcul des jets, prolongement principal. C. R. Acad. Sci. Paris, 233, 1951, 598-600, | MR
[10] Ehresmann, C.: Les prolongements d'une variété différentiable: l'espace des jets d'ordre $r$ de $V_n$ dans $V_m$. C. R. Acad. Sci. Paris, 233, 1951, 777-779, | MR
[11] Ehresmann, C.: Les prolongements d'une variété différentiable: transitivité des prolongements. C. R. Acad. Sci. Paris, 233, 1951, 1081-1083, | MR
[12] Ehresmann, C.: Les prolongements d'une variété différentiable: éléments de contact et éléments d'enveloppe. C. R. Acad. Sci. Paris, 234, 1952, 1028-1030, | MR
[13] Ehresmann, C.: Les prolongements d'une variété différentiable: covariants différentiels et prolongements d'une structure infinitésimale. C. R. Acad. Sci. Paris, 234, 1952, 1424-1425, | MR
[14] Frölicher, A., Nijenhuis, A.: Theory of vector valued differential forms. Part I. Ind. Math., 18, 1056, 338-360, | MR
[15] Goldschmidt, H., Sternberg, S.: The Hamilton--Cartan formalism in the calculus of variations. Ann. Inst, Fourier, 23, 1, 1973, 203-267, | DOI | MR
[16] Kolář, I., Michor, P.W., Slovak, J.: Natural operations in differential geometry. 1993, Springer, | MR
[17] Kolář, I.: Natural operators related with the variational calculus. Differential Geometry and its Applications, Opava 1992, 1993, 461-472, Silesian University, Opava, | MR
[18] Kolář, I.: Weil bundles as generalized jet space. Handbook of Global Analysis, ed. D. Krupka and D.J. Saunders, 2007, 625-665, Elsevier, | MR
[19] Kolář, I.: On special types of nonholonomic contact elements. Diff. Geom. Appl., 29, 5, 2011, 647-652, | DOI | MR | Zbl
[20] Kriegl, A., Michor, P.: The Convenient Setting of Global Analysis. 1997, AMS Mathematical Surveys and Monographs 53, | MR | Zbl
[21] Krbek, M., Musilová, J.: Representation of the variational sequence by differential forms. Acta Appl. Math., 88, 2005, 177-199, | DOI | MR
[22] Krupka, D.: A map associated to the Lepagean forms in the calculus of variations. Czech. Math. J., 27, 1977, 114-118, | DOI | MR
[23] Krupka, D.: Variational sequences on finite order jet spaces. Differential Geometry and its Applications, Brno 1989, 1990, 236-254, World Scientific, | MR
[24] Krupka, D.: The contact ideal. Diff. Geom. Appl., 5, 1995, 257-276, | DOI | MR
[25] Krupka, D., Musilová, J.: Trivial Lagrangians in field theory. Diff. Geom. Appl., 9, 1998, 293-305, | DOI | MR
[26] Libermann, P.: Introduction to the theory of semi-holonomic jets. Arch. Math. (Brno), 33, 1997, 173-189, | MR
[27] Libermann, P.: Charles Ehresmann's concepts in differential geometry. Geometry and Topology of Manifolds, Banach Center Publications, vol. 76, 2007, 35-50, Institute of Mathematics, Polish Academy of Sciences, Warszawa, | MR
[28] Manno, G., Vitolo, R.: Variational sequences on finite order jets of submanifolds. Differential Geometry and its Applications, Opava, 2001, 2001, 435-447, Silesian University at Opava, | MR
[29] Olver, P.J.: Equivalence and the Cartan form. Acta Appl. Math., 31, 1993, 99-136, | DOI | MR
[30] Saunders, D.J.: The geometry of jet bundles. 1989, Cambridge, | MR | Zbl
[31] Saunders, D.J.: A note on Legendre transformations. Diff. Geom. Appl., 1, 1991, 109-122, | DOI | MR
[32] Saunders, D.J.: Jet manifolds and natural bundles. Handbook of Global Analysis, ed. D. Krupka and D.J. Saunders, 2007, 1037-1070, Elsevier, | MR
[33] Saunders, D.J.: Homogeneous variational complexes and bicomplexes. J. Geom. Phys., 59, 2009, 727-739, | DOI | MR | Zbl
[34] Saunders, D.J.: Horizontal forms on jet bundles. Balkan J. Geom. Appl., 15, 1, 2010, 149-154, | MR
[35] Saunders, D.J.: Double structures and jets. Diff. Geom. Appl., 30, 1, 2012, 59-64, | DOI | MR
[36] Saunders, D.J.: On Lagrangians with reduced-order Euler--Lagrange equations. SIGMA, 14, 2018, 089, 13 pages, | MR
[37] Urban, Z., Krupka, D.: The Zermelo conditions and higher order homogeneous functions. Publ. Math. Debrecen, 82, 1, 2013, 59-76, | DOI | MR
[38] Vitolo, R.: Variational sequences. Handbook of Global Analysis, ed. D. Krupka and D.J. Saunders, 2007, 1117-1160, Elsevier, | MR
[39] Weil, A.: Théorie des points proches sur les variétés différentielles. Colloque de topologie et géométrie différentielle, 1953, 111-117, Strasbourg, | MR