Jets and the variational calculus
Communications in Mathematics, Tome 29 (2021) no. 1, pp. 91-114 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We review the approach to the calculus of variations using Ehresmann's theory of jets. We describe different types of jet manifold, different types of variational problem and different cohomological structures associated with such problems.
We review the approach to the calculus of variations using Ehresmann's theory of jets. We describe different types of jet manifold, different types of variational problem and different cohomological structures associated with such problems.
Classification : 58A20, 58E30
Keywords: Jets; Calculus of variations
@article{COMIM_2021_29_1_a5,
     author = {Saunders, David J.},
     title = {Jets and the variational calculus},
     journal = {Communications in Mathematics},
     pages = {91--114},
     year = {2021},
     volume = {29},
     number = {1},
     mrnumber = {4251307},
     zbl = {07413359},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2021_29_1_a5/}
}
TY  - JOUR
AU  - Saunders, David J.
TI  - Jets and the variational calculus
JO  - Communications in Mathematics
PY  - 2021
SP  - 91
EP  - 114
VL  - 29
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2021_29_1_a5/
LA  - en
ID  - COMIM_2021_29_1_a5
ER  - 
%0 Journal Article
%A Saunders, David J.
%T Jets and the variational calculus
%J Communications in Mathematics
%D 2021
%P 91-114
%V 29
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2021_29_1_a5/
%G en
%F COMIM_2021_29_1_a5
Saunders, David J. Jets and the variational calculus. Communications in Mathematics, Tome 29 (2021) no. 1, pp. 91-114. http://geodesic.mathdoc.fr/item/COMIM_2021_29_1_a5/

[1] Anderson, I.M.: The variational bicomplex. Technical report of Utah State University, 1989, available at https://ncatlab.org/nlab/files/AndersonVariationalBicomplex.pdf

[2] Anderson, I.M., Duchamp, T.E.: Variational principles for second-order quasi-linear scalar equations. J. Diff. Eq., 51, 1, 1984, 1-47, | DOI | MR

[3] Betounes, D.E.: Extensions of the classical Cartan form. Phys. Rev. D, 29, 1984, 599-606, | DOI | MR

[4] Borel, É.: Sur quelques points de la théorie des fonctions. Ann. scient. de l'École Norm. Sup., 3, 12, 1895, 9-55, | MR

[5] Carathéodory, C.: Über die Variationsrechnung bei mehrfachen Integralen. Acta Szeged Sect. Scient. Mathem., 4, 1929, 193-216,

[6] Crampin, M., Saunders, D.J.: The Hilbert--Carathéodory and Poincaré--Cartan forms for higher-order multiple-integral variational problems. Houston J. Math., 30, 3, 2004, 657-689, | MR

[7] Do, T.: The inverse problem in the calculus of variations via exterior differential systems. 2016, Ph.D. Thesis, La Trobe University, Melbourne, Australia.

[8] Do, T., Prince, G.: New progress in the inverse problem in the calculus of variations. Diff. Geom. Appl., 45, 2016, 148-179, | DOI | MR

[9] Ehresmann, C.: Les prolongements d'une variété différentiable: calcul des jets, prolongement principal. C. R. Acad. Sci. Paris, 233, 1951, 598-600, | MR

[10] Ehresmann, C.: Les prolongements d'une variété différentiable: l'espace des jets d'ordre $r$ de $V_n$ dans $V_m$. C. R. Acad. Sci. Paris, 233, 1951, 777-779, | MR

[11] Ehresmann, C.: Les prolongements d'une variété différentiable: transitivité des prolongements. C. R. Acad. Sci. Paris, 233, 1951, 1081-1083, | MR

[12] Ehresmann, C.: Les prolongements d'une variété différentiable: éléments de contact et éléments d'enveloppe. C. R. Acad. Sci. Paris, 234, 1952, 1028-1030, | MR

[13] Ehresmann, C.: Les prolongements d'une variété différentiable: covariants différentiels et prolongements d'une structure infinitésimale. C. R. Acad. Sci. Paris, 234, 1952, 1424-1425, | MR

[14] Frölicher, A., Nijenhuis, A.: Theory of vector valued differential forms. Part I. Ind. Math., 18, 1056, 338-360, | MR

[15] Goldschmidt, H., Sternberg, S.: The Hamilton--Cartan formalism in the calculus of variations. Ann. Inst, Fourier, 23, 1, 1973, 203-267, | DOI | MR

[16] Kolář, I., Michor, P.W., Slovak, J.: Natural operations in differential geometry. 1993, Springer, | MR

[17] Kolář, I.: Natural operators related with the variational calculus. Differential Geometry and its Applications, Opava 1992, 1993, 461-472, Silesian University, Opava, | MR

[18] Kolář, I.: Weil bundles as generalized jet space. Handbook of Global Analysis, ed. D. Krupka and D.J. Saunders, 2007, 625-665, Elsevier, | MR

[19] Kolář, I.: On special types of nonholonomic contact elements. Diff. Geom. Appl., 29, 5, 2011, 647-652, | DOI | MR | Zbl

[20] Kriegl, A., Michor, P.: The Convenient Setting of Global Analysis. 1997, AMS Mathematical Surveys and Monographs 53, | MR | Zbl

[21] Krbek, M., Musilová, J.: Representation of the variational sequence by differential forms. Acta Appl. Math., 88, 2005, 177-199, | DOI | MR

[22] Krupka, D.: A map associated to the Lepagean forms in the calculus of variations. Czech. Math. J., 27, 1977, 114-118, | DOI | MR

[23] Krupka, D.: Variational sequences on finite order jet spaces. Differential Geometry and its Applications, Brno 1989, 1990, 236-254, World Scientific, | MR

[24] Krupka, D.: The contact ideal. Diff. Geom. Appl., 5, 1995, 257-276, | DOI | MR

[25] Krupka, D., Musilová, J.: Trivial Lagrangians in field theory. Diff. Geom. Appl., 9, 1998, 293-305, | DOI | MR

[26] Libermann, P.: Introduction to the theory of semi-holonomic jets. Arch. Math. (Brno), 33, 1997, 173-189, | MR

[27] Libermann, P.: Charles Ehresmann's concepts in differential geometry. Geometry and Topology of Manifolds, Banach Center Publications, vol. 76, 2007, 35-50, Institute of Mathematics, Polish Academy of Sciences, Warszawa, | MR

[28] Manno, G., Vitolo, R.: Variational sequences on finite order jets of submanifolds. Differential Geometry and its Applications, Opava, 2001, 2001, 435-447, Silesian University at Opava, | MR

[29] Olver, P.J.: Equivalence and the Cartan form. Acta Appl. Math., 31, 1993, 99-136, | DOI | MR

[30] Saunders, D.J.: The geometry of jet bundles. 1989, Cambridge, | MR | Zbl

[31] Saunders, D.J.: A note on Legendre transformations. Diff. Geom. Appl., 1, 1991, 109-122, | DOI | MR

[32] Saunders, D.J.: Jet manifolds and natural bundles. Handbook of Global Analysis, ed. D. Krupka and D.J. Saunders, 2007, 1037-1070, Elsevier, | MR

[33] Saunders, D.J.: Homogeneous variational complexes and bicomplexes. J. Geom. Phys., 59, 2009, 727-739, | DOI | MR | Zbl

[34] Saunders, D.J.: Horizontal forms on jet bundles. Balkan J. Geom. Appl., 15, 1, 2010, 149-154, | MR

[35] Saunders, D.J.: Double structures and jets. Diff. Geom. Appl., 30, 1, 2012, 59-64, | DOI | MR

[36] Saunders, D.J.: On Lagrangians with reduced-order Euler--Lagrange equations. SIGMA, 14, 2018, 089, 13 pages, | MR

[37] Urban, Z., Krupka, D.: The Zermelo conditions and higher order homogeneous functions. Publ. Math. Debrecen, 82, 1, 2013, 59-76, | DOI | MR

[38] Vitolo, R.: Variational sequences. Handbook of Global Analysis, ed. D. Krupka and D.J. Saunders, 2007, 1117-1160, Elsevier, | MR

[39] Weil, A.: Théorie des points proches sur les variétés différentielles. Colloque de topologie et géométrie différentielle, 1953, 111-117, Strasbourg, | MR