Crystallographic actions on Lie groups and post-Lie algebra structures
Communications in Mathematics, Tome 29 (2021) no. 1, pp. 67-89 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This survey on crystallographic groups, geometric structures on Lie groups and associated algebraic structures is based on a lecture given in the Ostrava research seminar in $2017$.
This survey on crystallographic groups, geometric structures on Lie groups and associated algebraic structures is based on a lecture given in the Ostrava research seminar in $2017$.
Classification : 17D99, 20H15, 22E40
Keywords: Crystallographic groups; Pre-Lie algebras; Post-Lie algebras
@article{COMIM_2021_29_1_a4,
     author = {Burde, Dietrich},
     title = {Crystallographic actions on {Lie} groups and {post-Lie} algebra structures},
     journal = {Communications in Mathematics},
     pages = {67--89},
     year = {2021},
     volume = {29},
     number = {1},
     mrnumber = {4251306},
     zbl = {07413358},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2021_29_1_a4/}
}
TY  - JOUR
AU  - Burde, Dietrich
TI  - Crystallographic actions on Lie groups and post-Lie algebra structures
JO  - Communications in Mathematics
PY  - 2021
SP  - 67
EP  - 89
VL  - 29
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2021_29_1_a4/
LA  - en
ID  - COMIM_2021_29_1_a4
ER  - 
%0 Journal Article
%A Burde, Dietrich
%T Crystallographic actions on Lie groups and post-Lie algebra structures
%J Communications in Mathematics
%D 2021
%P 67-89
%V 29
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2021_29_1_a4/
%G en
%F COMIM_2021_29_1_a4
Burde, Dietrich. Crystallographic actions on Lie groups and post-Lie algebra structures. Communications in Mathematics, Tome 29 (2021) no. 1, pp. 67-89. http://geodesic.mathdoc.fr/item/COMIM_2021_29_1_a4/

[1] Abels, H., Margulis, G. A., Soifer, G. A.: Properly discontinuous groups of affine transformations with orthogonal linear part. C. R. Acad. Sci. Paris, 324, 253-258, | DOI | MR

[2] Abels, H., Margulis, G. A., Soifer, G. A.: The Auslander conjecture for groups leaving a form of signature $(n-2,2)$ invariant. Israel J. Math., 148, 2005, 11-21, | DOI | MR

[3] Auslander, L.: The structure of complete locally affine manifolds. Topology, 3, 1964, 131-139, | DOI | MR

[4] Auslander, L.: An Account of the Theory of Crystallographic Groups. Proceedings of the American Mathematical Society, 16, 6, 1965, 1230-1236, | DOI | MR

[5] Auslander, L.: Simply transitive groups of affine motions. Amer. J. Math., 99, 4, 1977, 809-826, | DOI | MR

[6] Baues, O.: Left-symmetric Algebras for gl(n). Trans. Amer. Math. Soc., 351, 7, 1999, 2979-2996, | DOI | MR

[7] Benkart, G., Kostrikin, A., Kuznetsov, M.: Finite-dimensional simple Lie algebras with a nonsingular derivation. J. Algebra, 171, 3, 1995, 894-916, | DOI | MR

[8] Benzécri, J. P.: Variétés localement affines. Thèse, Princeton Univ. , Princeton, N. J., 1955, | MR

[9] Bieberbach, L.: Über die Bewegungsgruppen der Euklidischen Räume (German). Math. Ann., 70, 3, 1911, 297-336, | DOI | MR

[10] Bieberbach, L.: Über die Bewegungsgruppen der Euklidischen Räume. Die Gruppen mit einem endlichen Fundamentalbereich (German). Math. Ann., 72, 3, 1912, 400-412, | DOI | MR

[11] Benoist, Y.: Une nilvariété non affine. J. Diff. Geom., 41, 1995, 21-52, | MR

[12] Brown, H., Bülow, R., Neubüser, J., Wondratschek, H., Zassenhaus, H.: Crystallographic groups of four-dimensional space. 1978, Wiley Monographs in Crystallography, Wiley-Interscience, New York-Chichester-Brisbane, | MR

[13] Burde, D.: Left-symmetric structures on simple modular Lie algebras. Journal of Algebra, 169, 1, 1994, 112-138, | DOI | MR

[14] Burde, D., Grunewald, F.: Modules for certain Lie algebras of maximal class. Journal of Pure and Applied Algebra, 99, 3, 1995, 239-254, | DOI | MR

[15] Burde, D.: Left-invariant affine structures on reductive Lie groups. Journal of Algebra, 181, 3, 1996, 884-902, | DOI | MR

[16] Burde, D.: Affine structures on nilmanifolds. International Journal of Mathematics, 7, 5, 1996, 599-616, | DOI | MR

[17] Burde, D.: A refinement of Ado's Theorem. Archiv der Mathematik, 70, 2, 1998, 118-127, | DOI | MR

[18] Burde, D., Dekimpe, K., Deschamps, S.: The Auslander conjecture for NIL-affine crystallographic groups. Mathematische Annalen, 332, 1, 2005, 161-176, | DOI | MR

[19] Burde, D.: Left-symmetric algebras, or pre-Lie algebras in geometry and physics. Central European Journal of Mathematics, 4, 3, 2006, 323-357, | DOI | MR

[20] Burde, D., Deschamps, K. Dekimpe and S.: LR-algebras. Contemporary Mathematics, 491, 2009, 125-140, | DOI | MR

[21] Burde, D., Eick, B., Graaf, W. A. de: Computing faithful representations for nilpotent Lie algebras. Journal of Algebra, 22, 3, 2009, 602-612, | DOI | MR

[22] Burde, D., Dekimpe, K., Vercammen, K.: Complete LR-structures on solvable Lie algebras. Journal of Group Theory, 13, 5, 2010, 703-719, | DOI | MR

[23] Burde, D., Moens, W. A.: Faithful Lie algebra modules and quotients of the universal enveloping algebra. Journal of Algebra, 325, 1, 2011, 440-460, | DOI | MR

[24] Burde, D., Vercammen, K. Dekimpe and K.: Affine actions on Lie groups and post-Lie algebra structures. Linear Algebra and its Applications, 437, 5, 2012, 1250-1263, | DOI | MR

[25] Burde, D., Dekimpe, K.: Post-Lie algebra structures and generalized derivations of semisimple Lie algebras. Moscow Mathematical Journal, 13, 1, 2013, 1-18, | DOI | MR

[26] Burde, D., Dekimpe, K.: Post-Lie algebra structures on pairs of Lie algebras. Journal of Algebra, 464, 2016, 226-245, | DOI | MR

[27] Burde, D., Moens, W. A.: Commutative post-Lie algebra structures on Lie algebras. Journal of Algebra, 467, 2016, 183-201, | DOI | MR

[28] Burde, D., Globke, W.: Étale representations for reductive algebraic groups with one-dimensional center. Journal of Algebra, 487, 2017, 200-216, | DOI | MR

[29] Burde, D., Globke, W., Minchenko, A.: Étale representations for reductive algebraic groups with factors $Sp_n$ or $SO_n$. Transformation Groups, 24, 3, 2019, 769-780, | DOI | MR

[30] Burde, D., Dekimpe, K., Moens, W. A.: Commutative post-Lie algebra structures and linear equations for nilpotent Lie algebras. Journal of Algebra, 526, 2019, 12-29, | DOI | MR

[31] Burde, D., Ender, C., Moens, W. A.: Post-Lie algebra structures for nilpotent Lie algebras. International Journal of Algebra and Computation, 28, 5, 2018, 915-933, | DOI | MR

[32] Burde, D., Gubarev, V.: Rota-Baxter operators and post-Lie algebra structures on semisimple Lie algebras. Communications in Algebra, 47, 5, 2019, 2280-2296, | DOI | MR

[33] Burde, D., Zusmanovich, P.: Commutative post-Lie algebra structures on Kac-Moody algebras. Communications in Algebra, 47, 12, 2019, 5218-5226, | DOI | MR

[34] Burde, D., Ender, C.: Commutative Post-Lie algebra structures on nilpotent Lie algebras and Poisson algebras. Linear Algebra and its Applications, 584, 2020, 107-126, | DOI | MR

[35] Burde, D., Gubarev, V.: Decompositions of algebras and post-associative algebra structures. International Journal of Algebra and Computation, 30, 3, 2020, 451-466, | DOI | MR

[36] Buser, P.: A geometric proof of Bieberbach's theorems on crystallographic groups. Enseign. Math., 31, 1-2, 1985, 137-145, | MR

[37] Dekimpe, K., Igodt, P.: Polycyclic-by-finite groups admit a bounded-degree polynomial structure. Invent. Math., 129, 1, 1997, 121-140, | DOI | MR

[38] Dekimpe, K.: Any virtually polycyclic group admits a NIL-affine crystallographic action. Topology, 42, 4, 2003, 821-832, | DOI | MR

[39] Ender, C.: Post-Lie algebra structures on classes of Lie algebras. PhD-thesis, University of Vienna, 2019,

[40] Fried, D., Goldman, W.: Three-dimensional affine crystallographic groups. Adv. Math., 47, 1983, 1-49, | DOI | MR

[41] Goldman, W. M.: Two papers which changed my life: Milnor's seminal work on flat manifolds and bundles. Frontiers in complex dynamics, Princeton Math. Ser., 51, 2014, 679-703, | MR

[42] Gromov, M., Piatetski-Shapiro, I.: Non-arithmetic groups in Lobachevsky spaces. Inst. Hautes Études Sci. Publ. Math., 66, 1988, 93-103, | DOI | MR

[43] Helmstetter, J.: Radical d'une algèbre symétrique a gauche. Ann. Inst. Fourier, 29, 1979, 17-35, | DOI | MR

[44] Hilbert, D.: Mathematical problems. Bulletin of the AMS, 87, 10, 1902, 437-479, | DOI | MR

[45] Jacobson, N.: A note on automorphisms and derivations of Lie algebras. Proc. Am. Math. Soc., 6, 1955, 281-283, | DOI | MR

[46] Margulis, G.A.: Complete affine locally flat manifolds with a free fundamental group. J. Soviet Math., 36, 1987, 129-139, | DOI

[47] Milnor, J.: On fundamental groups of complete affinely flat manifolds. Advances in Math., 25, 1977, 178-187, | DOI | MR

[48] Plesken, W., Schulz, T.: Counting crystallographic groups in low dimensions. Experiment. Math., 9, 3, 2000, 407-411, | DOI | MR

[49] Schwarzenberger, R.L.E.: Crystallography in spaces of arbitrary dimension. Proc. Cambridge Philos. Soc., 76, 1974, 23-32, | DOI | MR

[50] Segal, D.: The structure of complete left-symmetric algebras. Math. Ann., 293, 1992, 569-578, | DOI | MR

[51] Thurston, W.P.: Three-dimensional geometry and topology. Vol. 1. 35, 1997, Edited by Silvio Levy. Princeton Mathematical Series, Princeton University Press, Princeton, NJ, | MR

[52] Tomanov, G.: Properly discontinuous group actions on affine homogeneous spaces (English summary) Reprinted in Proc. Steklov Inst. Math. Algebra, Geometriya i Teoriya Chisel, 292, 1, 2016, 268-279, | MR

[53] Vallette, B.: Homology of generalized partition posets. J. Pure and Applied Algebra, 208, 2, 2007, 699-725, | DOI | MR

[54] (ed.), E. B. Vinberg: Geometry II. 29, 1991, Encyclopedia of Mathematical Sciences, Springer Verlag,

[55] Zassenhaus, H.: Über einen Algorithmus zur Bestimmung der Raumgruppen (German). Comment. Math. Helv., 21, 1948, 117-141, | DOI | MR