Keywords: Continuous logic; metric groups; unitary representations; amenable groups.
@article{COMIM_2021_29_1_a2,
author = {Ivanov, Aleksander},
title = {Metric groups, unitary representations and continuous logic},
journal = {Communications in Mathematics},
pages = {35--48},
year = {2021},
volume = {29},
number = {1},
mrnumber = {4251310},
zbl = {07413356},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2021_29_1_a2/}
}
Ivanov, Aleksander. Metric groups, unitary representations and continuous logic. Communications in Mathematics, Tome 29 (2021) no. 1, pp. 35-48. http://geodesic.mathdoc.fr/item/COMIM_2021_29_1_a2/
[1] Bekka, B., Harpe, P. de la, Valette, P.: Kazhdan's Property (T). New Mathematical Monographs, 11, Cambridge University Press, Cambridge, 2008, | MR
[2] Yaacov, I. Ben, Berenstein, A., Henson, W., Usvyatsov, A.: Model theory for metric structures. in: Model theory with Applications to Algebra and Analysis, v.2, Z. Chatzidakis, H.D. Macpherson, A. Pillay, A. Wilkie (eds.), London Math. Soc. Lecture Notes, v. 350, Cambridge University Press, 2008, 315 - 427, | MR
[3] Yaacov, I. Ben, Iovino, J.: Model theoretic forcing in analysis. Annals of Pure and Appl. Logic, 158, 2009, 163 - 174, | DOI | MR
[4] Bunina, E.I., Mikhalev, A.V.: Elementary properties of linear groups and related problems. J. Math. Sci. (N. Y.), 123, 2004, 3921 - 3985, | DOI | MR
[5] Doucha, M.: Generic norms and metrics on countable abelian groups. Monatsh. Mathematik, 189, 2020, 51 - 74, | DOI | MR
[6] Ershov, M., Jaikin-Zapirain, A.: Property (T) for noncommutative universal lattices. Invent. Math., 179, 2010, 303 - 347, | DOI | MR
[7] Goldbring, I.: Enforceable operator algebras. Journal of the Institute of Mathematics of Jussieu, 2019, 1 - 33, | MR
[8] Goldbring, I.: On the nonexistence of Folner sets. arXiv:1901.02445, 2019,
[9] Grigorchuk, R., Harpe, P. de la: Amenability and ergodic properties of topological groups: from Bogolyubov onwards. in: Groups, graphs and random walks, London Math. Soc. Lecture Note Ser., 436, Cambridge Univ. Press, Cambridge, 2017, 215 - 249, | MR
[10] Hernandes, S., Hofmann, K.H., Morris, S.A.: The weights of closed subgroups of a locally compact subgroup. J. Group Theory, 15, 2012, 613 - 630, | MR
[11] Ivanov, A.: Locally compact groups which are separably categorical structures. Arch. Math. Logic, 56, 2017, 67 - 78, | DOI | MR
[12] Ivanov, A.: Actions of metric groups and continuous logic. arXiv:1706.04157, 2017, | MR
[13] Pestov, V.: Amenability versus property (T) for non locally compact topological groups. Trans. Amer. Math. Soc., 370, 2018, 7417 - 7436, | DOI | MR
[14] Schneider, F.M., Thom, A.: On Folner sets in topological groups. Compositio Mathematica, 154, 2018, 1333 - 1361, | DOI | MR